These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
417 related articles for article (PubMed ID: 414808)
1. Build-up and depth-dose characteristics of different fast neutron beams relevant for radiotherapy. Mijnheer BJ Br J Radiol; 1978 Feb; 51(602):122-6. PubMed ID: 414808 [TBL] [Abstract][Full Text] [Related]
2. High energy fast neutrons from the Harwell variable energy cyclotron. I. Physical characteristics. Goodhead DT; Berry RJ; Bance DA; Gray P; Stedeford JB AJR Am J Roentgenol; 1977 Oct; 129(4):709-16. PubMed ID: 409249 [TBL] [Abstract][Full Text] [Related]
4. Radiobiological studies with therapeutic neutron beams generated by p+ leads to Be or d+ leads to Be. Hall EJ; Zaider M; Bird R; Astor M; Roberts W Br J Radiol; 1982 Sep; 55(657):640-4. PubMed ID: 6289956 [TBL] [Abstract][Full Text] [Related]
5. [Neutron flow measurements in the d(14) + Be neutron radiation field from the cyclotron in Essen]. Pöller F; Sauerwein W; Rau D; Wagner FM; Olthoff K; Rassow J; Sack H Strahlenther Onkol; 1990 Jun; 166(6):426-9. PubMed ID: 2363106 [TBL] [Abstract][Full Text] [Related]
6. Experimentally determined tissue air ratios and scatter air ratios for collimated beams of 14 mev neutrons. Beach JL; Kelsey CA Br J Radiol; 1975 Feb; 48(566):134-40. PubMed ID: 804946 [TBL] [Abstract][Full Text] [Related]
7. Microdosimetric measurements of radiation quality variations in homogeneous phantoms irradiated by fast neutron beams. Beach JL; Milavickas LR Med Phys; 1982; 9(1):52-9. PubMed ID: 6804771 [TBL] [Abstract][Full Text] [Related]
8. Dosimetric properties of p(90)+(Be + Ta) and p(101)+(Be + Al) neutrons. Harrison GH; Balcer-Kubiczek EK; Cox CR Med Phys; 1980; 7(4):348-51. PubMed ID: 6771513 [TBL] [Abstract][Full Text] [Related]
9. Empirical description and Monte Carlo simulation of fast neutron pencil beams as basis of a treatment planning system. Bourhis-Martin E; Meissner P; Rassow J; Baumhoer W; Schmidt R; Sauerwein W Med Phys; 2002 Aug; 29(8):1670-7. PubMed ID: 12201412 [TBL] [Abstract][Full Text] [Related]
10. Changes in relative biological effectiveness with depth of the Clatterbridge neutron therapy beam. Hornsey S; Myers R; Parnell CJ; Bonnett DE; Blake SW; Bewley DK Br J Radiol; 1988 Nov; 61(731):1058-62. PubMed ID: 3145090 [TBL] [Abstract][Full Text] [Related]
11. Dosimetric properties of neutron beams from the D--D reaction in the energy range from 6.8 to 11.1 MeV. Waterman FM; Kuchnir FT; Skaggs LS; Hendry GO; Tom JL Phys Med Biol; 1978 May; 23(3):397-404. PubMed ID: 674357 [TBL] [Abstract][Full Text] [Related]
12. Physical characteristics of a clinical d(48.5)+Be neutron therapy beam produced by a superconducting cyclotron. Maughan RL; Yudelev M Med Phys; 1995 Sep; 22(9):1459-65. PubMed ID: 8531873 [TBL] [Abstract][Full Text] [Related]
13. Intestinal crypt regeneration in mice: a biological system for quality assurance in non-conventional radiation therapy. Gueulette J; Octave-Prignot M; De Costera BM; Wambersie A; Grégoire V Radiother Oncol; 2004 Dec; 73 Suppl 2():S148-54. PubMed ID: 15971332 [TBL] [Abstract][Full Text] [Related]
14. A d(16) + Be fast neutron beam for therapy. Hough JH; Binns PJ Radiother Oncol; 1987 Sep; 10(1):71-5. PubMed ID: 3118420 [TBL] [Abstract][Full Text] [Related]
15. Validation of a pencil beam model-based treatment planning system for fast neutron therapy. Bourhis-Martin E; Meissner P; Rassow J; Baumhoer W; Schmidt R; Sauerwein W Med Phys; 2003 Jan; 30(1):21-6. PubMed ID: 12557974 [TBL] [Abstract][Full Text] [Related]
16. Comparison of neutron therapy beams produced by 50 MeV deuterons and 65 MeV protons on beryllium. Vynckier S; Pihet P; Octave-Prignot M; Meulders JP; Wambersie A Acta Radiol Oncol; 1982; 21(4):281-7. PubMed ID: 6293271 [TBL] [Abstract][Full Text] [Related]
17. Dose-response relationship of dicentric chromosomes in human lymphocytes obtained for the fission neutron therapy facility MEDAPP at the research reactor FRM II. Schmid E; Wagner FM; Romm H; Walsh L; Roos H Radiat Environ Biophys; 2009 Feb; 48(1):67-75. PubMed ID: 18979115 [TBL] [Abstract][Full Text] [Related]
18. Microdosimetric investigations on collimated fast neutron beams for radiation therapy: II. The problem of radiation quality and RBE. Booz J; Fidorra J Phys Med Biol; 1981 Jan; 26(1):43-56. PubMed ID: 6264510 [TBL] [Abstract][Full Text] [Related]
19. Microdosimetric investigations on collimated fast-neutron beams for radiation therapy: I. Measurements of microdosimetric spectra and particle dose fractions in a water phantom for fast neutrons from 14 MeV deuterons on beryllium. Fidorra J; Booz J Phys Med Biol; 1981 Jan; 26(1):27-41. PubMed ID: 6264509 [TBL] [Abstract][Full Text] [Related]
20. Triple chamber technique for thermal neutron dose measurements in fast neutron beams. Schmidt R; Hess A Strahlentherapie; 1982 Oct; 158(10):612-5. PubMed ID: 7179343 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]