These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 4148131)

  • 1. Possible control of hydrogen peroxide production and degradation in microsomes during mixed function oxidation reaction.
    Hildebrandt AG; Speck M; Roots I
    Biochem Biophys Res Commun; 1973 Oct; 54(3):968-75. PubMed ID: 4148131
    [No Abstract]   [Full Text] [Related]  

  • 2. Cumene hydroperoxide-supported microsomal hydroxylations of warfarin--a probe of cytochrome P-450 multiplicity and specificity.
    Fasco MJ; Piper LJ; Kaminsky LS
    Biochem Pharmacol; 1979; 28(1):97-103. PubMed ID: 31893
    [No Abstract]   [Full Text] [Related]  

  • 3. Microsomal NADPH-dependent lipid peroxidation does not require the presence of intact cytochrome P450.
    Baird MB
    Biochem Biophys Res Commun; 1980 Aug; 95(4):1510-6. PubMed ID: 7417332
    [No Abstract]   [Full Text] [Related]  

  • 4. Reduced nicotinamide adenine dinucleotide phosphate (NADPH)-dependent formation and breakdown of hydrogen peroxide during mixed function oxidation reactions in liver microsomes.
    Hildebraunt AG; Roots I
    Arch Biochem Biophys; 1975 Dec; 171(2):385-97. PubMed ID: 955
    [No Abstract]   [Full Text] [Related]  

  • 5. Effect of a catatoxic steroid pregnenolone-16alpha-carbonitrile, on rat liver microsomal subfractions.
    Lindeborg T; Glaumann H
    Exp Mol Pathol; 1974 Dec; 21(3):313-21. PubMed ID: 4372081
    [No Abstract]   [Full Text] [Related]  

  • 6. The effect of phenobarbital, 3-methylcholanthrene, and pregnenolone-16 alpha-carbonitrile on the N-demethylation and O-de-ethylation of [6-H3]ethylmorphine.
    Duquette PH; Peterson FJ; Erickson RR; Holtzman JL
    Drug Metab Dispos; 1981; 9(5):483-4. PubMed ID: 6117451
    [No Abstract]   [Full Text] [Related]  

  • 7. Reaction of microsomal and cytosolic enzymes with N-arylacetohydroxamic acids.
    Lenk W; Scharmer U
    Xenobiotica; 1980; 10(7-8):573-91. PubMed ID: 7445524
    [No Abstract]   [Full Text] [Related]  

  • 8. Separation, purification, and characterization of a novel form of hepatic cytochrome P-450 from rats treated with pregnenolone-16 alpha-carbonitrile.
    Elshourbagy NA; Guzelian PS
    J Biol Chem; 1980 Feb; 255(4):1279-85. PubMed ID: 6766445
    [No Abstract]   [Full Text] [Related]  

  • 9. The effect of phenobarbital, 3-methylcholanthrene, 3,4-benzpyrene, and pregnenolone-16 alpha-carbonitrile on microsomal heme oxygenase and splenic cytochrome P-450.
    Schacter BA; Mason JI
    Arch Biochem Biophys; 1974 Jan; 160(1):274-8. PubMed ID: 4828525
    [No Abstract]   [Full Text] [Related]  

  • 10. Effects of Triton X-100 on drug hydroxylation system of rat liver microsomes induced by phenobarbital or 3-methylcholanthrene.
    Takeshige K; Ito A; Minakami S
    J Biochem; 1972 Dec; 72(6):1361-7. PubMed ID: 4146373
    [No Abstract]   [Full Text] [Related]  

  • 11. The effects of substrates of mixed function oxidase on ethanol oxidation in rat liver microsomes.
    Hildebrandt AG; Speck M; Roots I
    Naunyn Schmiedebergs Arch Pharmacol; 1974; 281(4):271-82. PubMed ID: 4151424
    [No Abstract]   [Full Text] [Related]  

  • 12. Tetrachloroethylene metabolism by the hepatic microsomal cytochrome P-450 system.
    Costa AK; Ivanetich KM
    Biochem Pharmacol; 1980 Oct; 29(20):2863-9. PubMed ID: 7437086
    [No Abstract]   [Full Text] [Related]  

  • 13. Differences in P-450 cytochromes from livers of rats treated with phenobarbital and with 3-methylcholanthrene.
    Fujita T; Shoeman DW; Mannering GJ
    J Biol Chem; 1973 Mar; 248(6):2192-201. PubMed ID: 4690601
    [No Abstract]   [Full Text] [Related]  

  • 14. Oxidation of ethanol by hepatic microsomes of acatalasemic mice.
    Lieber CS; DeCarli LM
    Biochem Biophys Res Commun; 1974 Oct; 60(4):1187-92. PubMed ID: 4153619
    [No Abstract]   [Full Text] [Related]  

  • 15. Lipid peroxidation and the degradation of cytochrome P-450 heme.
    Levin W; Lu AY; Jacobson M; Kuntzman R; Poyer JL; McCay PB
    Arch Biochem Biophys; 1973 Oct; 158(2):842-52. PubMed ID: 4150126
    [No Abstract]   [Full Text] [Related]  

  • 16. Immunochemical study on the route of electron transfer from NADH and NADPH to cytochrome P-450 of liver microsomes.
    Noshiro M; Harada N; Omura T
    J Biochem; 1980 Nov; 88(5):1521-35. PubMed ID: 7462192
    [No Abstract]   [Full Text] [Related]  

  • 17. Pregnenolone-16alpha-carbonitrile-inducible cytochrome P450 in rat liver.
    Birnbaum LS; Baird MB; Massie HR
    Res Commun Chem Pathol Pharmacol; 1976 Nov; 15(3):553-62. PubMed ID: 825936
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of hydrogen peroxide and catalase in hepatic microsomal ethanol oxidation.
    Thurman RG; Scholz R
    Drug Metab Dispos; 1973; 1(1):441-8. PubMed ID: 4149416
    [No Abstract]   [Full Text] [Related]  

  • 19. Interaction of constitutive and phenobarbital-induced cytochrome P-450 isozymes during the sequential oxidation of benzphetamine. Explanation for the difference in benzphetamine-induced hydrogen peroxide production and 455-nm complex formation in microsomes from untreated and phenobarbital-treated rats.
    Jeffery EH; Mannering GJ
    Mol Pharmacol; 1983 May; 23(3):748-57. PubMed ID: 6865917
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Substrate-induced spectral change of liver microsomes in phenobarbital and methylcholanthrene-treated male and female rats.
    Kato R; Takanaka A; Takayanaghi M
    J Biochem; 1970 Sep; 68(3):395-413. PubMed ID: 5472352
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.