These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 4148231)

  • 1. On the role of superoxide in reactions catalyzed by rubredoxin of Pseudomonas oleovorans.
    May SW; Abbott BJ; Felix A
    Biochem Biophys Res Commun; 1973 Oct; 54(4):1540-5. PubMed ID: 4148231
    [No Abstract]   [Full Text] [Related]  

  • 2. Electron transfer from flavin to iron in the Pseudomonas oleovorans rubredoxin reductase-rubredoxin electron transfer complex.
    Lee HJ; Basran J; Scrutton NS
    Biochemistry; 1998 Nov; 37(44):15513-22. PubMed ID: 9799514
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A role for rubredoxin in oxidative stress protection in Desulfovibrio vulgaris: catalytic electron transfer to rubrerythrin and two-iron superoxide reductase.
    Coulter ED; Kurtz DM
    Arch Biochem Biophys; 2001 Oct; 394(1):76-86. PubMed ID: 11566030
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzymatic epoxidation. II. Comparison between the epoxidation and hydroxylation reactions catalyzed by the -hydroxylation system of Pseudomonas oleovorans.
    May SW; Abbott BJ
    J Biol Chem; 1973 Mar; 248(5):1725-30. PubMed ID: 4348547
    [No Abstract]   [Full Text] [Related]  

  • 5. Preparation and properties of immobilized rubredoxin.
    May W; Kuo JY
    J Biol Chem; 1977 Apr; 252(7):2390-5. PubMed ID: 849934
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reduction of alkyl hydroperoxides to alcohols: role of rubredoxin, an electron carrier in the bacterial hydroxylation of hydrocarbons.
    Boyer RF; Lode ET; Coon MJ
    Biochem Biophys Res Commun; 1971 Aug; 44(4):925-30. PubMed ID: 4399432
    [No Abstract]   [Full Text] [Related]  

  • 7. The role of putidaredoxin and P450 cam in methylene hydroxylation.
    Tyson CA; Lipscomb JD; Gunsalus IC
    J Biol Chem; 1972 Sep; 247(18):5777-84. PubMed ID: 4341491
    [No Abstract]   [Full Text] [Related]  

  • 8. Enzymatic epoxidation. I. Alkene epoxidation by the -hydroxylation system of Pseudomonas oleovorans.
    May SW; Abbott BJ
    Biochem Biophys Res Commun; 1972 Sep; 48(5):1230-4. PubMed ID: 4341053
    [No Abstract]   [Full Text] [Related]  

  • 9. The Pseudomonas oleovorans alkBAC operon encodes two structurally related rubredoxins and an aldehyde dehydrogenase.
    Kok M; Oldenhuis R; van der Linden MP; Meulenberg CH; Kingma J; Witholt B
    J Biol Chem; 1989 Apr; 264(10):5442-51. PubMed ID: 2647719
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of horseradish peroxidase catalyzed epinephrine oxidation: obligatory role of endogenous O2- and H2O2.
    Adak S; Bandyopadhyay U; Bandyopadhyay D; Banerjee RK
    Biochemistry; 1998 Dec; 37(48):16922-33. PubMed ID: 9836585
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydroperoxide catalyzed liver microsomal aromatic hydroxylation reactions involving cytochrome P-450.
    Rahimtula AD; O'Brien PJ
    Biochem Biophys Res Commun; 1974 Sep; 60(1):440-7. PubMed ID: 4153939
    [No Abstract]   [Full Text] [Related]  

  • 12. p-Hydroxybenzoate hydroxylase from Pseudomonas fluorescens. Reactivity with oxygen.
    Spector T; Massey V
    J Biol Chem; 1972 Nov; 247(22):7123-7. PubMed ID: 4404745
    [No Abstract]   [Full Text] [Related]  

  • 13. Rubredoxin/rubredoxin reductase of Pseudomonas oleovorans: a model system for investigating interprotein electron transfer.
    Lee HJ; Lian LY; Scrutton NS
    Biochem Soc Trans; 1996 Aug; 24(3):447S. PubMed ID: 8878991
    [No Abstract]   [Full Text] [Related]  

  • 14. An alkane monooxygenase (AlkB) family in which all electron transfer partners are covalently bound to the oxygen-activating hydroxylase.
    Williams SC; Luongo D; Orman M; Vizcarra CL; Austin RN
    J Inorg Biochem; 2022 Mar; 228():111707. PubMed ID: 34990970
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solution structure of the two-iron rubredoxin of Pseudomonas oleovorans determined by NMR spectroscopy and solution X-ray scattering and interactions with rubredoxin reductase.
    Perry A; Tambyrajah W; Grossmann JG; Lian LY; Scrutton NS
    Biochemistry; 2004 Mar; 43(11):3167-82. PubMed ID: 15023067
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction of epinephrine metabolites with the liver microsomal electron transport system.
    Uemura T; Chiesara E; Cova D
    Mol Pharmacol; 1977 Mar; 13(2):196-215. PubMed ID: 16206
    [No Abstract]   [Full Text] [Related]  

  • 17. Bacterial P-450cam methylene monooxygenase components: cytochrome m, putidaredoxin, and putidaredoxin reductase.
    Gunsalus IC; Wagner GC
    Methods Enzymol; 1978; 52():166-88. PubMed ID: 672627
    [No Abstract]   [Full Text] [Related]  

  • 18. [NADPH2 and organic hydroperoxide-dependent oxidation of adrenaline to adrenochromes in liver and brain microsomes].
    Savov VM; Eluashvili IA; Pisarev VA; Prilipko LL; Kagan VE
    Biull Eksp Biol Med; 1980 Nov; 90(11):555-7. PubMed ID: 6256023
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rubredoxin acts as an electron donor for neelaredoxin in Archaeoglobus fulgidus.
    Rodrigues JV; Abreu IA; Saraiva LM; Teixeira M
    Biochem Biophys Res Commun; 2005 Apr; 329(4):1300-5. PubMed ID: 15766568
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physical structure and expression of alkBA encoding alkane hydroxylase and rubredoxin reductase from Pseudomonas maltophilia.
    Lee NR; Hwang MO; Jung GH; Kim YS; Min KH
    Biochem Biophys Res Commun; 1996 Jan; 218(1):17-21. PubMed ID: 8573125
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.