These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 4148605)
1. [Influence of substituants on microsomal dealkylation of aromatic N-, O-, and S-alkyl compounds]. Schmidt HL; Möller MR; Weber N Biochem Pharmacol; 1973 Dec; 22(23):2989-96. PubMed ID: 4148605 [No Abstract] [Full Text] [Related]
2. Metabolism of ethylmorphine and aniline in human fetal liver. Rane A; Ackermann E Clin Pharmacol Ther; 1972; 13(5):663-70. PubMed ID: 4403357 [No Abstract] [Full Text] [Related]
3. The differentiation of N-oxidation and N-dealkylation of N-ethyl-N-methylaniline by rabbit liver microsomes as distinct metabolic routes. Gorrod JW; Temple DJ; Beckett AH Xenobiotica; 1975 Aug; 5(8):465-74. PubMed ID: 241156 [TBL] [Abstract][Full Text] [Related]
4. Studies concerning the possible involvement of singlet oxygen in the microsomal oxidation of aromatic substrates. Sternson LA; Wiley RA Chem Biol Interact; 1972 Oct; 5(5):317-25. PubMed ID: 4643765 [No Abstract] [Full Text] [Related]
5. Interaction of oxygen and aromatic amines with hepatic microsomal mixed-function oxidase. Hlavica P Biochim Biophys Acta; 1972 Jul; 273(2):318-27. PubMed ID: 4404134 [No Abstract] [Full Text] [Related]
6. NADH synergism of microsomal aniline metabolism in the presence of enhancing agents. Powis G; Lyon L; McKillop D Biochem Pharmacol; 1977 Jan; 26(2):137-41. PubMed ID: 13799 [No Abstract] [Full Text] [Related]
8. Species and substrate differences of liver microsomal N-dealkylation and N-oxidation of tertiary amines and N-dealkylation of N-oxides. Bickel MH; Willi P; Gigon PL Xenobiotica; 1971; 1(4):533-4. PubMed ID: 4277658 [No Abstract] [Full Text] [Related]
9. Effects in vitro of 2-aminofluorene or electrophilic agents on hepatic microsomal N- and C-oxygenation of aromatic amines. Arrhenius E Chem Biol Interact; 1970 Apr; 1(4):381-93. PubMed ID: 4334863 [No Abstract] [Full Text] [Related]
10. NADH-synergism of NADPH-dependent o-dealkylation of type II compounds, p-anisidine and p-phenetidine, in rat liver microsomes. Kitada M; Kamataki T; Kitagawa H Arch Biochem Biophys; 1977 Jan; 178(1):151-7. PubMed ID: 13719 [No Abstract] [Full Text] [Related]
11. Factors involved in the inhibition of drug metabolism by (-)-emetine. Johnson RK; Mazel P; Donahue JD; Jondorf WR Biochem Pharmacol; 1971 May; 20(5):955-66. PubMed ID: 4400643 [No Abstract] [Full Text] [Related]
12. Effects of various in vitro conditions on hepatic microsomal N- and C-oxygenation of aromatic amines. Arrhenius E Chem Biol Interact; 1970 Apr; 1(4):361-80. PubMed ID: 5524802 [No Abstract] [Full Text] [Related]
13. Electron transfer in the membranes of endoplasmic reticulum. The interaction of NADPH- and NADH-specific electron-transfer chains in microsomes. Archakov AI; Devichensky VM; Karuzina II; Karjakin AV Arch Biochem Biophys; 1975 Jan; 166(1):308-12. PubMed ID: 235893 [No Abstract] [Full Text] [Related]
14. An approach measurement of the stoichiometric relationship between hepatic microsomal drug metabolism and the oxidation of reduced nicotinamide adenine dinucleotide phosphate. Stripp B; Zampaglione N; Hamrick M; Gillette JR Mol Pharmacol; 1972 Mar; 8(2):189-96. PubMed ID: 4402003 [No Abstract] [Full Text] [Related]
15. Stimulation in vitro of microsomal aniline hydroxylation by 2,2'-bipyridine. Anders MW Biochem Pharmacol; 1969 Oct; 18(10):2561-5. PubMed ID: 4998131 [No Abstract] [Full Text] [Related]
16. The rate of N-demethylation of N,N-dimethylanilines and N-methylanilines by rat-liver microsomes is related to their first ionization potential, their lipophilicity and to a steric bulk factor. Galliani G; Nali M; Rindone B; Tollari S; Rocchetti M; Salmona M Xenobiotica; 1986 Jun; 16(6):511-7. PubMed ID: 3751107 [TBL] [Abstract][Full Text] [Related]
17. Effect of 4,4-dideuteration of reduced nicotinamide-adenine dinucleotide phosphate on the mixed function oxidases of hepatic microsomes. Holtzman JL Biochemistry; 1970 Feb; 9(4):995-1001. PubMed ID: 4392052 [No Abstract] [Full Text] [Related]
18. On the structure and catalytic function of mammary glucose 6-phosphate dehydrogenase. Levy HR; Raineri RR; Nevaldine BH J Biol Chem; 1966 May; 241(10):2181-7. PubMed ID: 4380377 [No Abstract] [Full Text] [Related]
19. Gossypol: subcellular localization and stimulation of rat liver microsomal oxidases. Abou-Donia MB; Dieckert JW Toxicol Appl Pharmacol; 1971 Mar; 18(3):507-16. PubMed ID: 4998823 [No Abstract] [Full Text] [Related]
20. Oxidation of an amino carbinol by an NAD+-dependent microsomal dehydrogenase. Schwartz MA; Kolis SJ Drug Metab Dispos; 1973; 1(1):322-31. PubMed ID: 4149400 [No Abstract] [Full Text] [Related] [Next] [New Search]