These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 4148939)

  • 41. Cytochrome P450-related differences between rats and mice in the metabolism of benzene, toluene and trichloroethylene in liver microsomes.
    Nakajima T; Wang RS; Elovaara E; Park SS; Gelboin HV; Vainio H
    Biochem Pharmacol; 1993 Mar; 45(5):1079-85. PubMed ID: 8461037
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Oxidative metabolism of carbon disulphide by the rat. Effect of treatments which modify the liver toxicity of carbon disulphide.
    De Matteis F; Seawright AA
    Chem Biol Interact; 1973 Dec; 7(6):375-88. PubMed ID: 4150011
    [No Abstract]   [Full Text] [Related]  

  • 43. 12alpha-hydroxylation of 7alpha-hydroxy-4-cholesten-3-one by a reconstituted system from rat liver microsomes.
    Bernhardsson C; Björkhem I; Danielsson H; Wikvall K
    Biochem Biophys Res Commun; 1973 Oct; 54(3):1030-8. PubMed ID: 4148126
    [No Abstract]   [Full Text] [Related]  

  • 44. Immunochemical study on the route of electron transfer from NADH and NADPH to cytochrome P-450 of liver microsomes.
    Noshiro M; Harada N; Omura T
    J Biochem; 1980 Nov; 88(5):1521-35. PubMed ID: 7462192
    [No Abstract]   [Full Text] [Related]  

  • 45. Hydroxylation of the carcinostatic 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea (CCNU) by rat liver microsomes.
    May HE; Boose R; Reed DJ
    Biochem Biophys Res Commun; 1974 Mar; 57(2):426-33. PubMed ID: 4151402
    [No Abstract]   [Full Text] [Related]  

  • 46. [Hydroxylation of progesterone by rabbit liver microsomes. Changes in metabolite pattern after phenobarbital treatment of the animals].
    Lange G; Thun KJ
    Naunyn Schmiedebergs Arch Pharmakol; 1970; 267(3):265-77. PubMed ID: 4394453
    [No Abstract]   [Full Text] [Related]  

  • 47. Role of phospholipid in the reconstituted liver microsomal mixed function oxidase system containing cytochrome P-450 and NADPH-cytochrome P-450 reductase.
    Autor AP; Kaschnitz RM; Heidema JK; Van der Hoeven TA; Duppel W; Coon MJ
    Drug Metab Dispos; 1973; 1(1):156-61. PubMed ID: 4149377
    [No Abstract]   [Full Text] [Related]  

  • 48. Metabolic activation of halothane and its covalent binding to liver endoplasmic proteins in vitro.
    Uehleke H; Hellmer KH; Tabarelli-Poplawski S
    Naunyn Schmiedebergs Arch Pharmacol; 1973; 279(1):39-52. PubMed ID: 4147966
    [No Abstract]   [Full Text] [Related]  

  • 49. Reduction of N-hydroxy-2-acetylaminofluorene by liver microsomes.
    Yamazoe Y; Ishii K; Yamaguchi N; Kamataki T; Kato R
    Biochem Pharmacol; 1980 Aug; 29(16):2183-8. PubMed ID: 7426024
    [No Abstract]   [Full Text] [Related]  

  • 50. Digitoxigenin metabolism by rat liver microsomes and its induction by phenobarbital.
    Spratt JL
    Biochem Pharmacol; 1973 Jul; 22(13):1669-71. PubMed ID: 4147114
    [No Abstract]   [Full Text] [Related]  

  • 51. Studies of the mechanisms of metabolism of diethyl p-nitrophenyl phosphorothionate (parathion) by rabbit liver microsomes.
    Norman BJ; Vaughn WK; Neal RA
    Biochem Pharmacol; 1973 May; 22(9):1091-101. PubMed ID: 4695668
    [No Abstract]   [Full Text] [Related]  

  • 52. The N-hydroxylation of phentermine by rat liver microsomes.
    Sum CY; Cho AK
    Drug Metab Dispos; 1977; 5(5):464-8. PubMed ID: 20295
    [No Abstract]   [Full Text] [Related]  

  • 53. Omega- and (omega-1)-hydroxylation of 4-chloropropionanilide in liver microsomes of rabbits treated with phenobarbital or 3-methylcholanthrene.
    Kiese M; Lenk W
    Biochem Pharmacol; 1973 Oct; 22(20):2575-80. PubMed ID: 4749714
    [No Abstract]   [Full Text] [Related]  

  • 54. The metabolism of benzene and phenol by a reconstituted purified phenobarbital-induced rat liver mixed function oxidase system.
    Griffiths JC; Kalf GF; Snyder R
    Adv Exp Med Biol; 1986; 197():213-22. PubMed ID: 3094336
    [No Abstract]   [Full Text] [Related]  

  • 55. Formation of (4R)- and (4S)-4-hydroxyochratoxin A and 10-hydroxyochratoxin A from Ochratoxin A by rabbit liver microsomes.
    Størmer FC; Støren O; Hansen CE; Pedersen JI; Aasen AJ
    Appl Environ Microbiol; 1983 Apr; 45(4):1183-7. PubMed ID: 6859843
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Evidence for a high-affinity enzyme in rat esophageal microsomes which alpha-hydroxylates N'-nitrosonornicotine.
    Murphy SE; Spina DA
    Carcinogenesis; 1994 Dec; 15(12):2709-13. PubMed ID: 8001225
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Limitations on the metyrapone assay for the major phenobarbital inducible form of cytochrome P-450.
    Ivanetich KM; Costa AK; Brittain T
    Biochem Biophys Res Commun; 1982 Apr; 105(4):1322-6. PubMed ID: 7103956
    [No Abstract]   [Full Text] [Related]  

  • 58. The role of cytochrome P-450 in the N-oxidation of individual amines.
    Uehleke H
    Drug Metab Dispos; 1973; 1(1):299-313. PubMed ID: 4149397
    [No Abstract]   [Full Text] [Related]  

  • 59. The role of NADH in uncoupled microsomal monoxygenations.
    Staudt H; Lichtenberger F; Ullrich V
    Eur J Biochem; 1974 Jul; 46(1):99-106. PubMed ID: 4153145
    [No Abstract]   [Full Text] [Related]  

  • 60. The oxygen sensing characteristics of microsomal enzymes.
    Estabrook RW; Werringloer J
    Adv Exp Med Biol; 1977; 78():19-35. PubMed ID: 19937
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.