These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 4150421)

  • 41. A comparison of some effects of dimethyl sulphoxide and dimethyl sulphone on rat liver microsomal enzymes.
    Stock BH; Fouts JR
    Biochem Pharmacol; 1971 Jul; 20(7):1525-36. PubMed ID: 4399524
    [No Abstract]   [Full Text] [Related]  

  • 42. [Monodehydro-L(plus)-ascorbate reducing systems in differently prepared pig liver microsomes (author's transl)].
    Weber H; Weis W; Wolf B
    Hoppe Seylers Z Physiol Chem; 1974 May; 355(5):595-9. PubMed ID: 4154897
    [No Abstract]   [Full Text] [Related]  

  • 43. Immunochemical evidence for the participation of cytochrome b5 in the NADH synergism of the NADPH-dependent mono-oxidase system of hepatic microsomes.
    Mannering GJ; Kuwahara S; Omura T
    Biochem Biophys Res Commun; 1974 Mar; 57(2):476-81. PubMed ID: 4151403
    [No Abstract]   [Full Text] [Related]  

  • 44. Possible mechanism of coupled NADPH oxidase and P-450 monooxygenase action.
    Jansson I; Schenkman JB
    Adv Exp Med Biol; 1981; 136 Pt A():145-63. PubMed ID: 7344455
    [No Abstract]   [Full Text] [Related]  

  • 45. [Role of hydrophobic interactions in electron transfer in rat liver microsomes].
    Chernobrovkina TV; Bachmanova GI; Archakov AI; Panchenko LF; Karuzina II
    Biokhimiia; 1974; 39(4):828-33. PubMed ID: 4155323
    [No Abstract]   [Full Text] [Related]  

  • 46. Studies on the microsomal electron-transport system of anaerobically grown yeast. IV. Purification and characterization of NADH-cytochrome b5 reductase.
    Kubota S; Yoshida Y; Kumaoka H
    J Biochem; 1977 Jan; 81(1):187-95. PubMed ID: 14930
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effect of phenobarbital and naphthalene on some of the components of the electron transport system and the hydroxylating activity of house fly microsomes.
    Capdevila J; Morello A; Perry AS; Agosin M
    Biochemistry; 1973 Mar; 12(7):1445-51. PubMed ID: 4696758
    [No Abstract]   [Full Text] [Related]  

  • 48. Reduced diphosphopyridine nucleotide synergism of the reduced triphosphopyridine nucleotide-dependent mixed-function oxidase system of hepatic microsomes. I. Effects of activation and inhibition of the fatty acyl coenzyme A desaturation system.
    Correia MA; Mannering GJ
    Mol Pharmacol; 1973 Jul; 9(4):455-69. PubMed ID: 4146889
    [No Abstract]   [Full Text] [Related]  

  • 49. Immunochemical study on the route of electron transfer from NADH and NADPH to cytochrome P-450 of liver microsomes.
    Noshiro M; Harada N; Omura T
    J Biochem; 1980 Nov; 88(5):1521-35. PubMed ID: 7462192
    [No Abstract]   [Full Text] [Related]  

  • 50. Significance of enzyme induction to clinical anesthesia.
    Berman ML
    Clin Anesth; 1975; 11(1):93-102. PubMed ID: 47274
    [No Abstract]   [Full Text] [Related]  

  • 51. The binding of cytochrome b 5 to liver microsomes.
    Strittmatter P; Rogers MJ; Spatz L
    J Biol Chem; 1972 Nov; 247(22):7188-94. PubMed ID: 4404746
    [No Abstract]   [Full Text] [Related]  

  • 52. The role of NADH in uncoupled microsomal monoxygenations.
    Staudt H; Lichtenberger F; Ullrich V
    Eur J Biochem; 1974 Jul; 46(1):99-106. PubMed ID: 4153145
    [No Abstract]   [Full Text] [Related]  

  • 53. Stimulation of a reconstituted, microsomal NADH oxidase system by carboquone, a quinoid anticancer chemical.
    Tamura Y; Sato S
    Gan; 1977 Jun; 68(3):353-6. PubMed ID: 199521
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The involvement of NADH-cytochrome b5 reductase and cytochrome b5 complex in microsomal NADH-cytochrome c reductase activity. Changes in NADH-cytochrome c reductase activity following phenobarbital treatment.
    StarĂ³n K; Kaniuga Z
    Acta Biochim Pol; 1974; 21(1):61-6. PubMed ID: 4364831
    [No Abstract]   [Full Text] [Related]  

  • 55. Rate-limiting step in the reconstituted microsomal drug hydroxylase system.
    Imai Y; Sato R; Iyanagi T
    J Biochem; 1977 Nov; 82(5):1237-46. PubMed ID: 412842
    [No Abstract]   [Full Text] [Related]  

  • 56. Reaction of microsomal and cytosolic enzymes with N-arylacetohydroxamic acids.
    Lenk W; Scharmer U
    Xenobiotica; 1980; 10(7-8):573-91. PubMed ID: 7445524
    [No Abstract]   [Full Text] [Related]  

  • 57. Respiratory activity of Ehrlich ascites tumour cell nuclei.
    Bartoli GM; Dani A; Galeotti T; Russo M; Terranova T
    Z Krebsforsch Klin Onkol Cancer Res Clin Oncol; 1975; 83(3):223-31. PubMed ID: 167532
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The role of NADPH-cytochrome b 5 reductase in microsomal lipid peroxidation.
    Bidlack WR; Okita RT; Hochstein P
    Biochem Biophys Res Commun; 1973 Jul; 53(2):459-65. PubMed ID: 4146148
    [No Abstract]   [Full Text] [Related]  

  • 59. Selenium and hepatic microsomal hemoproteins.
    Burk RF; Mackinnon AM; Simon FR
    Biochem Biophys Res Commun; 1974 Jan; 56(2):431-6. PubMed ID: 4150918
    [No Abstract]   [Full Text] [Related]  

  • 60. Properties of partially purified liver microsomal cytochrome P-450: acceptance of two electrons during anaerobic titration.
    Ballou DP; Veeger C; van der Hoeven TA; Coon MJ
    FEBS Lett; 1974 Jan; 38(3):337-40. PubMed ID: 4369075
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.