BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 4150654)

  • 21. The control of tricarboxylate-cycle oxidations in blowfly flight muscle. The oxidized and reduced nicotinamide-adenine dinucleotide content of flight muscle and isolated mitochondria, the adenosine triphosphate and adenosine diphosphate content of mitochondria, and the energy status of the mitochondria during controlled respiration.
    Hansford RG
    Biochem J; 1975 Mar; 146(3):537-47. PubMed ID: 167720
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Regulation of mitochondrial adenine nucleotide content in newborn rabbit liver.
    Tullson PC; Aprille JR
    Am J Physiol; 1987 Nov; 253(5 Pt 1):E530-5. PubMed ID: 2891302
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Complex I-mediated reactive oxygen species generation: modulation by cytochrome c and NAD(P)+ oxidation-reduction state.
    Kushnareva Y; Murphy AN; Andreyev A
    Biochem J; 2002 Dec; 368(Pt 2):545-53. PubMed ID: 12180906
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ethanol and acetaldehyde alter brain mitochondrial redox responses to direct cortical stimulation in vivo.
    Novack RL; LaManna JC; Rosenthal M
    Neuropharmacology; 1982 Oct; 21(10):1051-8. PubMed ID: 6292768
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Regulation of lactate production at the onset of ischaemia is independent of mitochondrial NADH/NAD+: insights from in silico studies.
    Zhou L; Stanley WC; Saidel GM; Yu X; Cabrera ME
    J Physiol; 2005 Dec; 569(Pt 3):925-37. PubMed ID: 16223766
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Turnover of protein-bound serine phosphate in respiring slices of guinea-pig cerebral cortex. Effects of putative transmitters, tetrodotoxin and other agents.
    Reddington M; Rodnight R; Williams M
    Biochem J; 1973 Mar; 132(3):475-82. PubMed ID: 4353378
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The nature of controlled respiration and its relationship to protonmotive force and proton conductance in blowfly flight-muscle mitochondria.
    Johnson RN; Hansford RG
    Biochem J; 1977 May; 164(2):305-22. PubMed ID: 195584
    [TBL] [Abstract][Full Text] [Related]  

  • 28. NAD(P)H utilization in the reduction of pyruvate to lactate in a glycogen-containing subline of Ehrlich ascites tumour cells.
    Eboli ML; Galeotti T
    Z Krebsforsch Klin Onkol Cancer Res Clin Oncol; 1977; 88(3):291-301. PubMed ID: 16410
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Some properties of pyruvate and 2-oxoglutarate oxidation by blowfly flight-muscle mitochondria.
    Hansford RG
    Biochem J; 1972 Mar; 127(1):271-83. PubMed ID: 4342212
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Stoichiometry and compartmentation of NADH metabolism in Saccharomyces cerevisiae.
    Bakker BM; Overkamp KM; van Maris AJ ; Kötter P; Luttik MA; van Dijken JP ; Pronk JT
    FEMS Microbiol Rev; 2001 Jan; 25(1):15-37. PubMed ID: 11152939
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Response of toad brain respiratory chain enzymes to ouabain, elevated potassium, and electrical stimulus.
    Moffett DF; Jöbsis FF
    Brain Res; 1976 Nov; 117(2):239-55. PubMed ID: 186153
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Loss of NAD(H) from swollen yeast mitochondria.
    Bradshaw PC; Pfeiffer DR
    BMC Biochem; 2006 Jan; 7():3. PubMed ID: 16433924
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The proton-translocating nicotinamide-adenine dinucleotide (phosphate) transhydrogenase of rat liver mitochondria.
    Moyle J; Mitchell P
    Biochem J; 1973 Mar; 132(3):571-85. PubMed ID: 4146799
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Lactate is oxidized outside of the mitochondrial matrix in rodent brain.
    Herbst EAF; George MAJ; Brebner K; Holloway GP; Kane DA
    Appl Physiol Nutr Metab; 2018 May; 43(5):467-474. PubMed ID: 29206478
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Energy metabolism and NAD-NADH redox state in brain slices in response to glutamate exposure and ischemia.
    Kannurpatti SS; Joshi NB
    Metab Brain Dis; 1999 Mar; 14(1):33-43. PubMed ID: 10348312
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cytosolic redox potential and phosphate transport in the proximal tubule of the rabbit. A study in the isolated perfused tubules.
    Yanagawa N; Nagami GT; Kurokawa K
    Miner Electrolyte Metab; 1985; 11(1):57-61. PubMed ID: 3974539
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cytochrome redox potential dependence on substrate in rat cerebral cortex slices: importance of cytoplasmic NAD(P)H and potassium.
    Bull RJ
    J Neurochem; 1976 Jan; 26(1):149-56. PubMed ID: 3625
    [No Abstract]   [Full Text] [Related]  

  • 38. The regulation of exogenous NAD(P)H oxidation in spinach (Spinacia oleracea) leaf mitochondria by pH and cations.
    Edman K; Ericson I; Møller IM
    Biochem J; 1985 Dec; 232(2):471-7. PubMed ID: 3937519
    [TBL] [Abstract][Full Text] [Related]  

  • 39. On the control of glycogenolysis in mammalian nervous tissue by calcium.
    Landowne D; Ritchie JM
    J Physiol; 1971 Jan; 212(2):503-17. PubMed ID: 4323308
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Calcium concentration in rat liver mitochondria during anoxic incubation.
    Chang YJ; Chang KJ
    J Formos Med Assoc; 2002 Feb; 101(2):136-43. PubMed ID: 12099205
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.