These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 4150779)

  • 1. Conversion of carbon 4 of malate into products of the pentose cycle by isolated bundle sheath strands of Digitaria sanguinalis (L.) Scop. leaves.
    Dittrich P; Salin ML; Black CC
    Biochem Biophys Res Commun; 1973 Nov; 55(1):104-10. PubMed ID: 4150779
    [No Abstract]   [Full Text] [Related]  

  • 2. The effect of oxygen on 14CO2 fixation in mesophyll cells isolated from Digitaria sanguinalis (L.) Scop. leaves.
    Chollet R
    Biochem Biophys Res Commun; 1973 Dec; 55(3):850-6. PubMed ID: 4761087
    [No Abstract]   [Full Text] [Related]  

  • 3. Carboxylation reactions and photosynthesis of carbon compounds in isolated mesophyll and bundle sheath cells of Digitaria sanguinalis (L.) Scop.
    Edwards GE; Lee SS; Chen TM; Black CC
    Biochem Biophys Res Commun; 1970 May; 39(3):389-95. PubMed ID: 5421941
    [No Abstract]   [Full Text] [Related]  

  • 4. Glycolate metabolism in mesophyll cells and bundle sheath cells isolated from crabgrass, Digitaria sanguinalis (L.) Scop., leaves.
    Liu AY; Black CC
    Arch Biochem Biophys; 1972 Mar; 149(1):269-80. PubMed ID: 4335962
    [No Abstract]   [Full Text] [Related]  

  • 5. Photosynthetic Metabolism of Aspartate in Mesophyll and Bundle Sheath Cells Isolated from Digitaria sanguinalis (L.) Scop., a NADP-Malic Enzyme C(4) Plant.
    Shieh YJ; Ku MS; Black CC
    Plant Physiol; 1982 Apr; 69(4):776-80. PubMed ID: 16662295
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 14CO2 fixation and glycolate metabolism in the dark in isolated maize (Zea mays L.) bundle sheath strands.
    Chollet R
    Arch Biochem Biophys; 1974 Aug; 163(2):521-9. PubMed ID: 4370561
    [No Abstract]   [Full Text] [Related]  

  • 7. Regulation of enzymes in C4 photosynthesis.
    Hatch MD
    Curr Top Cell Regul; 1978; 14():1-27. PubMed ID: 32012
    [No Abstract]   [Full Text] [Related]  

  • 8. Malate dehydrogenase in Zea mays: properties and inhibition by sulfite.
    Ziegler I
    Biochim Biophys Acta; 1974 Sep; 364(1):28-37. PubMed ID: 4154781
    [No Abstract]   [Full Text] [Related]  

  • 9. The control of malate dehydrogenase activity by adenine nucleotides in purified potato tuber (Solanum tuberosum L.) mitochondria.
    Rustin P; Valat M
    Arch Biochem Biophys; 1986 May; 247(1):62-7. PubMed ID: 3707142
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of glucose in development of the gibberellin response in peas.
    Broughton WJ; Hellmuth EO; Yeung D
    Biochim Biophys Acta; 1970 Nov; 222(2):491-500. PubMed ID: 5491226
    [No Abstract]   [Full Text] [Related]  

  • 11. Isolation of Mesophyll Cells and Bundle Sheath Cells from Digitaria sanguinalis (L.) Scop. Leaves and a Scanning Microscopy Study of the Internal Leaf Cell Morphology.
    Edwards GE; Black CC
    Plant Physiol; 1971 Jan; 47(1):149-56. PubMed ID: 16657571
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photosynthesis in Phosphoenolpyruvate carboxykinase-type C4 plants: mechanism and regulation of C4 acid decarboxylation in bundle sheath cells.
    Carnal NW; Agostino A; Hatch MD
    Arch Biochem Biophys; 1993 Nov; 306(2):360-7. PubMed ID: 8215437
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphoenolpyruvate carboxykinase in leaves of certain plants whick fix CO 2 by the C 4 -dicarboxylic acid cycle of photosynthesis.
    Edwards GE; Kanai R; Black CC
    Biochem Biophys Res Commun; 1971 Oct; 45(2):278-85. PubMed ID: 5160716
    [No Abstract]   [Full Text] [Related]  

  • 14. Photosynthetic activities of isolated bundle sheath cells in relation to differing mechanisms of C-4 pathway photosynthesis.
    Hatch MD; Kagawa T
    Arch Biochem Biophys; 1976 Jul; 175(1):39-53. PubMed ID: 8014
    [No Abstract]   [Full Text] [Related]  

  • 15. Phosphoenolpyruvate carboxylase reduces photorespiration in Panicum milioides, a C3-C4 intermediate species.
    Rathnam CK; Chollet R
    Arch Biochem Biophys; 1979 Apr; 193(2):346-54. PubMed ID: 464601
    [No Abstract]   [Full Text] [Related]  

  • 16. Decarboxylation of malate by isolated bundle-sheath cells of certain plants having the C4-dicarboxylic acid cycle of photosynthesis.
    Huber SC; Kanai R; Edwards GE
    Planta; 1973 Mar; 113(1):53-66. PubMed ID: 24468846
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxygen inhibits maize bundle sheath photosynthesis.
    Chollet R; Oglen WL
    Biochem Biophys Res Commun; 1972 Mar; 46(6):2062-6. PubMed ID: 5018669
    [No Abstract]   [Full Text] [Related]  

  • 18. [Carbon dioxide assimilation pathways of Ectothiorhodospira shaposhnikovii].
    Firsov NN; Cherniad'ev II; IvanovskiÄ­ RN; Kondrat'eva EN; Vdovina NV
    Mikrobiologiia; 1974 Mar; 43(2):214-9. PubMed ID: 4828739
    [No Abstract]   [Full Text] [Related]  

  • 19. Regulation of glucose-6-phosphate dehydrogenase in spinach chloroplasts by ribulose 1,5-diphosphate and NADPH/NADP+ ratios.
    Lendzian K; Bassham JA
    Biochim Biophys Acta; 1975 Aug; 396(2):260-75. PubMed ID: 239745
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxalacetate decarboxylase and pyruvate carboxylase activities, and effect of sulfhydryl reagents in malic enzyme from Sulfolobus solfataricus.
    Guagliardi A; Moracci M; Manco G; Rossi M; Bartolucci S
    Biochim Biophys Acta; 1988 Nov; 957(2):301-11. PubMed ID: 3142524
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.