BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 4150797)

  • 1. Evidence for the participation of cytochrome b5 in plasmalogen biosynthesis.
    Paltuaf F; Prough RA; Masters BS; Johnston JM
    J Biol Chem; 1974 Apr; 249(8):2661-2. PubMed ID: 4150797
    [No Abstract]   [Full Text] [Related]  

  • 2. The possible involvement of cytochrome b5 in the oxidation of lauric acid by microsomes from kidney cortex and liver of rats.
    Sasame HA; Thorgeirsson SS; Mitchell JR; Gillette JR
    Life Sci; 1974 Jan; 14(1):35-46. PubMed ID: 4129689
    [No Abstract]   [Full Text] [Related]  

  • 3. Enzymic studies on glial and neuronal cells during myelination.
    Woelk H; Jahrreiss R
    Adv Exp Med Biol; 1978; 100():43-53. PubMed ID: 29455
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The action of piracetam on the formation of ethanolamine-plasmalogen by neuronal microsomes of the developing rat brain.
    Woelk H; Peiler-Ichikawa K
    Arzneimittelforschung; 1978; 28(10):1752-6. PubMed ID: 582679
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electron transport components of hepatic microsomes. Solubilization, resolution, and recombination to reconstitute aniline hydroxylase activity.
    Fujita T; Mannering GJ
    J Biol Chem; 1973 Dec; 248(23):8150-6. PubMed ID: 4148101
    [No Abstract]   [Full Text] [Related]  

  • 6. Immunochemical evidence for the participation of cytochrome b5 in the NADH synergism of the NADPH-dependent mono-oxidase system of hepatic microsomes.
    Mannering GJ; Kuwahara S; Omura T
    Biochem Biophys Res Commun; 1974 Mar; 57(2):476-81. PubMed ID: 4151403
    [No Abstract]   [Full Text] [Related]  

  • 7. Immunochemical evidence for the participation of cytochrome b5 in microsomal stearyl-CoA desaturation reaction.
    Oshino N; Omura T
    Arch Biochem Biophys; 1973 Aug; 157(2):395-404. PubMed ID: 4147187
    [No Abstract]   [Full Text] [Related]  

  • 8. Fatty acid desaturase system of yeast microsomes. Involvement of cytochrome b5-containing electron-transport chain.
    Tamura Y; Yoshida Y; Sato R; Kumaoka H
    Arch Biochem Biophys; 1976 Jul; 175(1):284-94. PubMed ID: 8011
    [No Abstract]   [Full Text] [Related]  

  • 9. Studies on soluble proteins stimulating plasmalogen biosynthesis.
    Paltauf F
    Adv Exp Med Biol; 1978; 101():387-95. PubMed ID: 665374
    [No Abstract]   [Full Text] [Related]  

  • 10. Immunochemical evidence for an association of heme oxygenase with the microsomal electron transport system.
    Schacter BA; Nelson EB; Marver HS; Masters BS
    J Biol Chem; 1972 Jun; 247(11):3601-7. PubMed ID: 4113125
    [No Abstract]   [Full Text] [Related]  

  • 11. Influences of substrates of different microsomal electron transfer pathways on the oxidation-reduction kinetics of microsomal cytochrome b5.
    Jansson I; Schenkman JB
    Arch Biochem Biophys; 1978 Jan; 185(1):251-61. PubMed ID: 23728
    [No Abstract]   [Full Text] [Related]  

  • 12. Abnormal microsomal cytochromes and electron transport in Morris hepatomas.
    Miyake Y; Gaylor JL; Morris HP
    J Biol Chem; 1974 Mar; 249(6):1980-7. PubMed ID: 4150421
    [No Abstract]   [Full Text] [Related]  

  • 13. Nicotinamide adenine dinucleotide and nicotinamide adenine dinucleotide phosphate-dependent reduction of mammalian hepatic microsomal cytochrome b5: some properties of the enzyme system catalyzing the endogenous reduction of pyridine nucleotides.
    Kulkarni AP; Hodgson E
    Int J Biochem; 1982; 14(9):825-30. PubMed ID: 7128914
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The many roles of cytochrome b-5 in hepatic microsomes.
    Schenkman JB; Jansson I; Robie-Suh KM
    Life Sci; 1976 Sep; 19(5):611-23. PubMed ID: 8685
    [No Abstract]   [Full Text] [Related]  

  • 15. Evidence for randon distribution and translational movement of cytochrome b5 in endoplasmic reticulum.
    Rogers MJ; Strittmatter P
    J Biol Chem; 1974 Feb; 249(3):895-900. PubMed ID: 4359775
    [No Abstract]   [Full Text] [Related]  

  • 16. Mechanism of C-5 double bond introduction in the biosynthesis of cholesterol by rat liver microsomes.
    Reddy VV; Kupfer D; Caspi E
    J Biol Chem; 1977 May; 252(9):2797-801. PubMed ID: 192722
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Liver microsomal electron transport systems. II. The involvement of cytochrome b5 in the NADH-dependent hydroxylation of 3,4-benzpyrene by a reconstituted cytochrome P-448-containing system.
    West SB; Levin W; Ryan D; Vore M; Lu AY
    Biochem Biophys Res Commun; 1974 May; 58(2):516-522. PubMed ID: 4366168
    [No Abstract]   [Full Text] [Related]  

  • 18. Role of cytochrome b5 in NADPH-and NADH-dependent hydroxylation by the reconstituted cytochrome P-450- or P-448-containing system.
    Lu AY; Levin W; West SB; Vore M; Ryan D; Kuntzman R; Conney AH
    Adv Exp Med Biol; 1975; 58(00):447-66. PubMed ID: 239545
    [No Abstract]   [Full Text] [Related]  

  • 19. Studies on the microsomal electron-transport system of anaerobically grown yeast. IV. Purification and characterization of NADH-cytochrome b5 reductase.
    Kubota S; Yoshida Y; Kumaoka H
    J Biochem; 1977 Jan; 81(1):187-95. PubMed ID: 14930
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduced nicotinamide adenine dinucleotide-cytochrome b5 reductase and cytochrome b5 as electron carriers in NADH-supported cytochrome P-450 -dependent enzyme activities in liver microsomes.
    Hrycay EG; Prough RA
    Arch Biochem Biophys; 1974 Nov; 165(1):331-9. PubMed ID: 4374132
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.