BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 4150903)

  • 1. Induction of hepatic microsomal reduced nicotinamide adenine dinucleotide phosphate-dependent production of hydrogen peroxide by chronic prior treatment with ethanol.
    Thurman RG
    Mol Pharmacol; 1973 Sep; 9(5):670-5. PubMed ID: 4150903
    [No Abstract]   [Full Text] [Related]  

  • 2. Hepatic microsomal ethanol-oxidizing system (MEOS): dissociation from reduced nicotinamide adenine dinucleotide phosphate oxidase and possible role of form I of cytochrome P-450.
    Hasumura Y; Teschke R; Lieber CS
    J Pharmacol Exp Ther; 1975 Aug; 194(2):469-74. PubMed ID: 1151772
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hepatic microsomal ethanol oxidation. Hydrogen peroxide formation and the role of catalase.
    Thurman RG; Ley HG; Scholz R
    Eur J Biochem; 1972 Feb; 25(3):420-30. PubMed ID: 4402915
    [No Abstract]   [Full Text] [Related]  

  • 4. The role of hydrogen peroxide and catalase in hepatic microsomal ethanol oxidation.
    Thurman RG; Scholz R
    Drug Metab Dispos; 1973; 1(1):441-8. PubMed ID: 4149416
    [No Abstract]   [Full Text] [Related]  

  • 5. Reduced nicotinamide-adenine dinucleotide phosphate oxidase: activity enhanced by ethanol consumption.
    Lieber CS; DeCarli LM
    Science; 1970 Oct; 170(3953):78-80. PubMed ID: 4393821
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proceedings: H2O2 formation during the uncoupling of hepatic microsomal mixed function oxidation reactions. Its relation to ethanol oxidation.
    Hildebrandt AG; Tjoe M; Roots I
    Naunyn Schmiedebergs Arch Pharmacol; 1975; 287 Suppl():R73. PubMed ID: 1143489
    [No Abstract]   [Full Text] [Related]  

  • 7. Enhancement of DNA chain breakage by bleomycin A2 in the presence of microsomes and reduced nicotinamide adenine dinucleotide phosphate.
    Yamanaka N; Kato T; Nishida K; Ota K
    Cancer Res; 1978 Nov; 38(11 Pt 1):3900-3. PubMed ID: 81106
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immunochemical detection and quantitation of microsomal cytochrome P-450 and reduced nicotinamide adenine dinucleotide phosphate:cytochrome P-450 reductase in the rat ventral prostate.
    Haaparanta T; Halpert J; Glaumann H; Gustafsson JA
    Cancer Res; 1983 Nov; 43(11):5131-7. PubMed ID: 6413054
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proceedings: Stimulation of microsomal ethanol oxidation by H202 formation during the uncoupling of hepatic microsomal mixed function oxidation reactions.
    Hildebrandt AG; Tjoe M; Roots I
    Z Klin Chem Klin Biochem; 1975 Aug; 13(8):374. PubMed ID: 1216969
    [No Abstract]   [Full Text] [Related]  

  • 10. Effect of prostaglandin F2 alpha on free radical generation, glutathione content and microsomal oxidase activities in rat liver microsomes induced either by ethanol or acetone.
    Sadovnichy V; Müller D; Buko V
    Pol J Pharmacol; 1997; 49(6):431-7. PubMed ID: 9566047
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The significance and characterization of hepatic microsomal ethanol oxidation in the liver.
    Lieber CS; DeCarli LM
    Drug Metab Dispos; 1973; 1(1):428-40. PubMed ID: 4149415
    [No Abstract]   [Full Text] [Related]  

  • 12. The role of the hepatic microsomal ethanol oxidizing system (MEOS) for ethanol metabolism in vivo.
    Lieber CS; DeCarli LM
    J Pharmacol Exp Ther; 1972 May; 181(2):279-87. PubMed ID: 4402282
    [No Abstract]   [Full Text] [Related]  

  • 13. [Metabolic aspects of alcoholic liver damage: 1984/1985 update. 2: Microsomal enzyme induction and hypermetabolism].
    Seitz HK
    Z Gastroenterol; 1985 Jan; 23(1):1-5. PubMed ID: 2865858
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxygen consumption and oxyradical production from microsomal reduction of aqueous extracts of cigarette tar.
    Winston GW; Church DF; Cueto R; Pryor WA
    Arch Biochem Biophys; 1993 Aug; 304(2):371-8. PubMed ID: 8394056
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An approach measurement of the stoichiometric relationship between hepatic microsomal drug metabolism and the oxidation of reduced nicotinamide adenine dinucleotide phosphate.
    Stripp B; Zampaglione N; Hamrick M; Gillette JR
    Mol Pharmacol; 1972 Mar; 8(2):189-96. PubMed ID: 4402003
    [No Abstract]   [Full Text] [Related]  

  • 16. Effect of superoxide dismutase on hydroxylase activity and hydrogen peroxide formation in anthranilamide hydroxylation by a rat liver microsomal monooxygenase system.
    Ohta Y; Ishiguro I; Naito J; Shinohara R
    Biochem Int; 1984 May; 8(5):617-27. PubMed ID: 6477624
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of N-methylolpentamethylmelamine in the metabolic activation of hexamethylmelamine.
    Ames MM; Sanders ME; Tiede WS
    Cancer Res; 1983 Feb; 43(2):500-4. PubMed ID: 6401219
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microsomal acetaldehyde oxidation is negligible in the presence of ethanol.
    Wu YS; Salmela KS; Lieber CS
    Alcohol Clin Exp Res; 1998 Aug; 22(5):1165-9. PubMed ID: 9726291
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Microsomal ethanol oxidizing system in the hepatocyte: its nature and significance for ethanol oxidation (author's transl)].
    Hasumura Y; Teschke R; Lieber CS
    Tanpakushitsu Kakusan Koso; 1976 Aug; 21(8):636-46. PubMed ID: 9668
    [No Abstract]   [Full Text] [Related]  

  • 20. The effects of substrates of mixed function oxidase on ethanol oxidation in rat liver microsomes.
    Hildebrandt AG; Speck M; Roots I
    Naunyn Schmiedebergs Arch Pharmacol; 1974; 281(4):271-82. PubMed ID: 4151424
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.