BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 4151393)

  • 1. Evidence for a critical period for postnatal elevation of brain tyrosine hydroxylase activity resulting from reserpine administration during embryonic development.
    Lydiard RB; Sparber SB
    J Pharmacol Exp Ther; 1974 May; 189(2):370-9. PubMed ID: 4151393
    [No Abstract]   [Full Text] [Related]  

  • 2. Postnatal elevation of brain tyrosine hydroxylase activity, without concurrent increases in steady-state catecholamine levels, resulting from dl-alpha-methylparatyrosine administration during embryonic development.
    Lydiard RB; Fossom LH; Sparber SB
    J Pharmacol Exp Ther; 1975 Jul; 194(1):27-36. PubMed ID: 239220
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of repeated administration of (-)- 9 -tetrahydrocannabinol on the biosynthesis of brain amines.
    Ho BT; Taylor D; Englert LF
    Res Commun Chem Pathol Pharmacol; 1973 May; 5(3):851-4. PubMed ID: 4144821
    [No Abstract]   [Full Text] [Related]  

  • 4. Effect of 4-chlorophenoxyamphetamine (A-6587), d-amphetamine and 4-chloroamphetamine on brain biogenic amines and behavior in mice.
    Everett GM; Yellin TO
    Res Commun Chem Pathol Pharmacol; 1971; 2(4):407-13. PubMed ID: 4400361
    [No Abstract]   [Full Text] [Related]  

  • 5. The effect of a single dose of reserpine administered prior to incubation on the development of tyrosine hydroxylase activity in chick sympathetic ganglia.
    Fairman K; Chiappinelli V; Giacobini E; Yurkewicz L
    Brain Res; 1977 Feb; 122(3):503-12. PubMed ID: 14767
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detour learning in the chick: effect of reserpine administered during embryonic development.
    Sparber SB; Shideman FE
    Dev Psychobiol; 1969; 2(2):56-9. PubMed ID: 5407655
    [No Abstract]   [Full Text] [Related]  

  • 7. Estimation of catecholamines in the brains of embryonic and newly hatched chickens and the effects of reserpine.
    Sparber SB; Shideman FE
    Dev Psychobiol; 1969; 2(2):115-9. PubMed ID: 5407652
    [No Abstract]   [Full Text] [Related]  

  • 8. Elevated catecholamines in thirty-day-old chicken brain after depletion during development.
    Sparber SS; Shideman FE
    Dev Psychobiol; 1970; 3(2):123-9. PubMed ID: 5527429
    [No Abstract]   [Full Text] [Related]  

  • 9. Influence of disulfiram and sodium diethyldithiocarbamate on pressor response to tyramine in reserpinized rats.
    Szmigielski A
    Acta Physiol Pol; 1974 May; 25(3):257-62. PubMed ID: 4152260
    [No Abstract]   [Full Text] [Related]  

  • 10. A developmental role for catecholamines in Drosophila behavior.
    Pendleton RG; Rasheed A; Paluru P; Joyner J; Jerome N; Meyers RD; Hillman R
    Pharmacol Biochem Behav; 2005 Aug; 81(4):849-53. PubMed ID: 16051344
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of acute, repeated and chronic variable stress on in vivo tyrosine hydroxylase activity and on alpha(2)-adrenoceptor sensitivity in the rat brain.
    Prieto M; Gómez FM; Teresa Giralt M
    Stress; 2003 Dec; 6(4):281-7. PubMed ID: 14660060
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development and aging of noradrenergic cell bodies and axon terminals in the chicken.
    Yurkewicz L; Marchi M; Lauder JM; Giacobini E
    J Neurosci Res; 1981; 6(5):621-41. PubMed ID: 6119368
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the regulation of tryptophan hydroxylase in brain.
    Zivkovic B; Guidotti A; Costa E
    Adv Biochem Psychopharmacol; 1974; 11(0):19-30. PubMed ID: 4152484
    [No Abstract]   [Full Text] [Related]  

  • 14. Effects of drugs on the biochemical and behavioral responses of developing organisms.
    Sparber SB
    Fed Proc; 1972; 31(1):74-80. PubMed ID: 5061895
    [No Abstract]   [Full Text] [Related]  

  • 15. Exposure to prenatal carbon monoxide and postnatal hyperthermia: short and long-term effects on neurochemicals and neuroglia in the developing brain.
    Tolcos M; Mallard C; McGregor H; Walker D; Rees S
    Exp Neurol; 2000 Apr; 162(2):235-46. PubMed ID: 10739630
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photic evoked cortical potentials: interaction of reserpine, monoamine oxidase inhibition, and DOPA.
    Sabelli HC; Giardina WJ; Bartizal F
    Biol Psychiatry; 1971; 3(3):273-80. PubMed ID: 5163812
    [No Abstract]   [Full Text] [Related]  

  • 17. Short- and long-term regulation of tyrosine hydroxylase.
    Costa E; Guidotti A; Zivkovic B
    Adv Biochem Psychopharmacol; 1974; 12(0):161-75. PubMed ID: 4154019
    [No Abstract]   [Full Text] [Related]  

  • 18. Development of hydroxytryptophan decarboxylase activity in the pineal gland, cerebral hemispheres, and cerebellum of the chick embryo and young chick.
    Wainwright SD
    Can J Biochem; 1974 Mar; 52(3):149-54. PubMed ID: 4545361
    [No Abstract]   [Full Text] [Related]  

  • 19. [Tyrosine hydroxylase and dopa decarboxylase expression in the neurons of a mediobasal hypothalamic transplant].
    Fetisov SO
    Ontogenez; 1994; 25(3):21-5. PubMed ID: 7914020
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lack of effect of chronically administered thyrotropin-releasing hormone (TRH) on regional rat brain tyrosine hydroxylase activity.
    Nemeroff CB; Diez JA; Bissette G; Prange AJ; Harrell LE; Lipton MA
    Pharmacol Biochem Behav; 1977 Apr; 6(4):467-9. PubMed ID: 18744
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.