These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 4151451)

  • 1. 5-Keto-D-fructose: formation and utilization in the course of D-fructose as similation by Gluconabacter cerinus.
    Mowshowitz S; Avigad G; Englard S
    J Bacteriol; 1974 Jun; 118(3):1051-8. PubMed ID: 4151451
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic consequences of a block in the synthesis of 5-keto-D-fructose in a mutant of Gluconobacter cerinus.
    Mowshowitz S; Englard S; Avigad G
    J Bacteriol; 1974 Aug; 119(2):363-70. PubMed ID: 4853173
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The metabolic significance of octulose phosphates in the photosynthetic carbon reduction cycle in spinach.
    Williams JF; MacLeod JK
    Photosynth Res; 2006 Nov; 90(2):125-48. PubMed ID: 17160443
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solution structure of 5-keto-D-fructose: relevance to the specificity of hexose kinases.
    Blanchard JS; Brewer CF; Englard S; Avigad G
    Biochemistry; 1982 Jan; 21(1):75-81. PubMed ID: 7059583
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transport and catabolism of D-fructose by Spirillum itersomii.
    Hylemon PB; Krieg NR; Phibbs PV
    J Bacteriol; 1974 Jan; 117(1):144-50. PubMed ID: 4808897
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New developments in oxidative fermentation.
    Adachi O; Moonmangmee D; Toyama H; Yamada M; Shinagawa E; Matsushita K
    Appl Microbiol Biotechnol; 2003 Feb; 60(6):643-53. PubMed ID: 12664142
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 5-Keto-D-fructose. IV. A specific reduced nicotinamide adenine dinucleotide phosphate-linked reductase from Gluconobacter cerinus.
    Avigad G; Englard S; Pifko S
    J Biol Chem; 1966 Jan; 241(2):373-8. PubMed ID: 4379259
    [No Abstract]   [Full Text] [Related]  

  • 8. The 5-Ketofructose Reductase of
    Nguyen TM; Goto M; Noda S; Matsutani M; Hodoya Y; Kataoka N; Adachi O; Matsushita K; Yakushi T
    J Bacteriol; 2021 Sep; 203(19):e0055820. PubMed ID: 34309403
    [No Abstract]   [Full Text] [Related]  

  • 9. 5-Keto-D-fructose production from sugar alcohol by isolated wild strain
    Adachi O; Nguyen TM; Hours RA; Kataoka N; Matsushita K; Akakabe Y; Yakushi T
    Biosci Biotechnol Biochem; 2020 Aug; 84(8):1745-1747. PubMed ID: 32427050
    [TBL] [Abstract][Full Text] [Related]  

  • 10. POLYOL METABOLISM IN THE BASIDIOMYCETE SCHIZOPHYLLUM COMMUNE.
    NIEDERPRUEM DJ; HAFIZ A; HENRY L
    J Bacteriol; 1965 Apr; 89(4):954-9. PubMed ID: 14276121
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The kinetics of glucose-fructose oxidoreductase from Zymomonas mobilis.
    Hardman MJ; Scopes RK
    Eur J Biochem; 1988 Apr; 173(1):203-9. PubMed ID: 3356190
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation and characterization of thermotolerant Gluconobacter strains catalyzing oxidative fermentation at higher temperatures.
    Moonmangmee D; Adachi O; Ano Y; Shinagawa E; Toyama H; Theeragool G; Lotong N; Matsushita K
    Biosci Biotechnol Biochem; 2000 Nov; 64(11):2306-15. PubMed ID: 11193396
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 5-KETO-D-FRUCTOSE. II. PATTERNS OF FORMATION AND OF ASSOCIATED DEHYDROGENASE ACTIVITIES IN GLUCONOBACTER CERINUS.
    ENGLARD S; AVIGAD G
    J Biol Chem; 1965 Jun; 240():2297-310. PubMed ID: 14304829
    [No Abstract]   [Full Text] [Related]  

  • 14. Metabolism of some polyols by Rhizobium meliloti.
    Martinez De Drets G; Arias A
    J Bacteriol; 1970 Jul; 103(1):97-103. PubMed ID: 5423374
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbon-flux distribution in the central metabolic pathways of Corynebacterium glutamicum during growth on fructose.
    Dominguez H; Rollin C; Guyonvarch A; Guerquin-Kern JL; Cocaign-Bousquet M; Lindley ND
    Eur J Biochem; 1998 May; 254(1):96-102. PubMed ID: 9652400
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of fructose on D-[6-3H]-glucose uptake and sorbitol metabolism of bovine retina in vitro.
    Naeser P; Brolin SE; Lindström B
    J Diabetes Complications; 1995; 9(1):31-6. PubMed ID: 7734741
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The production of (14C) oxalate during the metabolism of (14C) carbohydrates in isolated rat hepatocytes.
    Rofe AM; James HM; Bais R; Edwards JB; Conyers RA
    Aust J Exp Biol Med Sci; 1980 Apr; 58(2):103-16. PubMed ID: 7436870
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic alterations in the human erythrocyte produced by increases in glucose concentration. The role of the polyol pathway.
    Travis SF; Morrison AD; Clements RS; Winegrad AI; Oski FA
    J Clin Invest; 1971 Oct; 50(10):2104-12. PubMed ID: 4398937
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fructose catabolism in Azospirillum brasilense and Azospirillum lipoferum.
    Goebel EM; Krieg NR
    J Bacteriol; 1984 Jul; 159(1):86-92. PubMed ID: 6735986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heterotrophic metabolism of the chemolithotroph Thiobacillus ferrooxidans.
    Tabita R; Lundgren DG
    J Bacteriol; 1971 Oct; 108(1):334-42. PubMed ID: 4399339
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.