These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 4151532)

  • 1. Energization of phenylalanine transport and energy-dependent transhydrogenase by ATP in cytochrome-deficient Escherichia coli K12.
    Singh AP; Bragg PD
    Biochem Biophys Res Commun; 1974 Apr; 57(4):1200-6. PubMed ID: 4151532
    [No Abstract]   [Full Text] [Related]  

  • 2. The reconstitution of oxidase activity in membranes derived from a 5-aminolaevulinic acid-requiring mutant of Escherichia coli.
    Haddock BA
    Biochem J; 1973 Dec; 136(4):877-84. PubMed ID: 4150652
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energization of energy-dependent transhydrogenase of Escherichia coli at a second site of energy conservation.
    Bragg PD; Hou C
    Arch Biochem Biophys; 1974 Aug; 163(2):614-6. PubMed ID: 4153348
    [No Abstract]   [Full Text] [Related]  

  • 4. Energy-linked reduction of nicotinamide--adenine dinucleotide in membranes derived from normal and various respiratory-deficient mutant strains of Escherichia coli K12.
    Poole RK; Haddock BA
    Biochem J; 1974 Oct; 144(1):77-85. PubMed ID: 4156832
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assembly of functional b-type cytochromes in membranes from a 5-aminolaevulinic acid-requiring mutant of Escherichia coli.
    Reid GA; Haddock BA; Ingledew WJ
    FEBS Lett; 1981 Aug; 131(2):346-50. PubMed ID: 7028509
    [No Abstract]   [Full Text] [Related]  

  • 6. Energy-linked and energy-independent transhydrogenase activities in Escherichia coli vesicles.
    Houghton RL; Fisher RJ; Sanadi DR
    Biochim Biophys Acta; 1975 Jul; 396(1):17-23. PubMed ID: 167848
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transport of sugars and amino acids in bacteria. X. Sources of energy and energy coupling reactions of the active transport systems for isoleucine and proline in E. coli.
    Kobayashi H; Kin E; Anraku Y
    J Biochem; 1974 Aug; 76(2):251-61. PubMed ID: 4154322
    [No Abstract]   [Full Text] [Related]  

  • 8. The use of mutants of Escherichia coli K12 in studying electron transport and oxidative phosphorylation.
    Gibson F; Cox GB
    Essays Biochem; 1973; 9():1-29. PubMed ID: 4149255
    [No Abstract]   [Full Text] [Related]  

  • 9. Salmonella typhimurium HfrA, a mutant in which adenosine triphosphate can drive amino acid transport but not energy-dependent nicotinamide nucleotide transhydrogenation.
    Kay WW; Bragg PD
    Biochem J; 1975 Jul; 150(1):21-9. PubMed ID: 128357
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anaerobic transport of amino acids coupled to the glycerol-3-phosphate-fumarate oxidoreductase system in a cytochrome-deficient mutant of Escherichia coli.
    Singh AP; Bragg PD
    Biochim Biophys Acta; 1976 Mar; 423(3):450-61. PubMed ID: 130924
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Studies on electron transport and energy-linked reactions using mutants of Escherichia coli.
    Cox GB; Gibson F
    Biochim Biophys Acta; 1974 Apr; 346(1):1-25. PubMed ID: 4151653
    [No Abstract]   [Full Text] [Related]  

  • 12. Functional mosaicism of membrane proteins in vesicles of Escherichia coli.
    Adler LW; Rosen BP
    J Bacteriol; 1977 Feb; 129(2):959-66. PubMed ID: 190212
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The energy-linked transhydrogenase reaction in respiratory mutants of Escherichia coli K12.
    Cox GB; Newton NA; Butlin JD; Gibson F
    Biochem J; 1971 Nov; 125(2):489-93. PubMed ID: 4335691
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cytochromes in Streptococcus faecalis var. zymogenes grown in a haematin-containing medium.
    Ritchey TW; Seeley HW
    J Gen Microbiol; 1974 Dec; 85(2):220-8. PubMed ID: 4155716
    [No Abstract]   [Full Text] [Related]  

  • 15. Inhibition of energization of Salmonella typhimurium membrane by zinc ions.
    Singh AP; Bragg PD
    FEBS Lett; 1974 Mar; 40(1):200-2. PubMed ID: 4152921
    [No Abstract]   [Full Text] [Related]  

  • 16. Function of energy-dependent transhydrogenase in Escherichia coli.
    Bragg PD; Davies PL; Hou C
    Biochem Biophys Res Commun; 1972 Jun; 47(5):1248-55. PubMed ID: 4337747
    [No Abstract]   [Full Text] [Related]  

  • 17. Reconstitution of the energy-linked transhydrogenase activity in membranes from a mutant strain of Escherichia coli K12 lacking magnesium ion- or calcium ion-stimulated adenosine triphosphatase.
    Cox GB; Gibson F; McCann LM; Butlin JD; Crane FL
    Biochem J; 1973 Apr; 132(4):689-95. PubMed ID: 4269101
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Transhydrogenase as an additional site of energy accumulation in the E. coli respiratory chain].
    Chetkauskaite AV; Grinius LL
    Biokhimiia; 1979 Jun; 44(6):1101-9. PubMed ID: 37931
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enzyme organization in the proline biosynthetic pathway of Escherichia coli.
    Gamper H; Moses V
    Biochim Biophys Acta; 1974 Jun; 354(1):75-87. PubMed ID: 4152574
    [No Abstract]   [Full Text] [Related]  

  • 20. The use of several energy-coupling reactions in characterizing mutants of Escherichia coli K12 defective in oxidative phosphorylation.
    Schairer HU; Friedl P; Schmid BI; Vogel G
    Eur J Biochem; 1976 Jul; 66(2):257-68. PubMed ID: 133025
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.