BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 4151955)

  • 1. Pleiotropy of hisT mutants blocked in pseudouridine synthesis in tRNA: leucine and isoleucine-valine operons.
    Cortese R; Landsberg R; Haar RA; Umbarger HE; Ames BN
    Proc Natl Acad Sci U S A; 1974 May; 71(5):1857-61. PubMed ID: 4151955
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Derepressed levels of the isoleucine-valine and leucine enzymes in his T 1504, a strain of Salmonella typhimurium with altered leucine transfer ribonucleic acid.
    Rizzino AA; Bresalier RS; Freundlich M
    J Bacteriol; 1974 Feb; 117(2):449-55. PubMed ID: 4359646
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence that the majority of leucine transfer ribonucleic acid is not involved in repression in Salmonella typhimurium.
    Freundlich M; Trela J; Peng W
    J Bacteriol; 1971 Nov; 108(2):951-3. PubMed ID: 4942773
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of isoleucine, valine, and leucine biosynthesis. VI. Effect of 5',5',5'-trifluoroleucine on repression in Salmonella typhimurium.
    Freundlich M; Trela JM
    J Bacteriol; 1969 Jul; 99(1):101-6. PubMed ID: 4895839
    [TBL] [Abstract][Full Text] [Related]  

  • 5. flrB, a regulatory locus controlling branched-chain amino acid biosynthesis in Salmonella typhimurium.
    Friedberg D; Mikulka TW; Jones J; Calvo JM
    J Bacteriol; 1974 Jun; 118(3):942-51. PubMed ID: 4598011
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reduced maximal levels of derepression of the isoleucine-valine and leucine enzymes in hisT mutants of Salmonella typhimurium.
    Bresalier RS; Rizzino AA; Freundlich M
    Nature; 1975 Jan; 253(5489):279-80. PubMed ID: 1089896
    [No Abstract]   [Full Text] [Related]  

  • 7. Detection of messenger RNA from the isoleucine--valine operons of Salmonella typhimurium by heterologous DNA-RNA hybridization: involvement of transfer RNA in transcriptional repression.
    Childs G; Sonnenberg F; Freundlich M
    Mol Gen Genet; 1977 Mar; 151(2):121-6. PubMed ID: 327261
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutants of Salmonella typhimurium with an altered leucyl-transfer ribonucleic acid synthetase.
    Alexander RR; Calvo JM; Freundlich M
    J Bacteriol; 1971 Apr; 106(1):213-20. PubMed ID: 4928008
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A heterologous system for detecting eukaryotic enzymes which synthesize pseudouridine in transfer ribonucleic acids.
    Mullenbach GT; Kammen HO; Penhoet EE
    J Biol Chem; 1976 Aug; 251(15):4570-8. PubMed ID: 780353
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biochemical and regulatory properties of Escherichia coli K-12 hisT mutants.
    Bruni CB; Colantuoni V; Sbordone L; Cortese R; Blasi F
    J Bacteriol; 1977 Apr; 130(1):4-10. PubMed ID: 323237
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Separate regulation of transport and biosynthesis of leucine, isoleucine, and valine in bacteria.
    Quay SC; Oxender DL; Tsuyumu S; Umbarger HE
    J Bacteriol; 1975 Jun; 122(3):994-1000. PubMed ID: 1097409
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Branched-chain amino acid transport regulation in mutants blocked in tRNA maturation and transcriptional termination.
    Quay SC; Lawther RP; Hatfield GW; Oxender DL
    J Bacteriol; 1978 May; 134(2):683-6. PubMed ID: 350834
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Escherichia coli B/r leuK mutant lacking pseudouridine synthase I activity.
    Searles LL; Jones JW; Fournier MJ; Grambow N; Tyler B; Calvo JM
    J Bacteriol; 1986 Apr; 166(1):341-5. PubMed ID: 3514581
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of nitrogen utilization of hisT mutants of Salmonella typhimurium.
    Rosenfeld SA; Brenchley JE
    J Bacteriol; 1980 Aug; 143(2):801-8. PubMed ID: 7009565
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of threonine deaminase in the regulation of isoleucine and valine biosynthesis.
    Levinthal M; Williams LS; Umbarger HE
    Nat New Biol; 1973 Nov; 246(151):65-8. PubMed ID: 4586445
    [No Abstract]   [Full Text] [Related]  

  • 16. Effect of isoleucine, valine, or leucine starvation on the potential for formation of the branched-chain amino acid biosynthetic enzymes.
    Wasmuth JJ; Umbarger HE
    J Bacteriol; 1973 Nov; 116(2):548-61. PubMed ID: 4200849
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Purification and properties of a mammalian tRNA pseudouridine synthase.
    Green CJ; Kammen HO; Penhoet EE
    J Biol Chem; 1982 Mar; 257(6):3045-52. PubMed ID: 7037778
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Escherichia coli K-12 mutants altered in the transport of branched-chain amino acids.
    Guardiola J; Iaccarino M
    J Bacteriol; 1971 Dec; 108(3):1034-44. PubMed ID: 4945181
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Repression and inhibition of transport systems for branched-chain amino acids in Salmonella typhimurium.
    Kiritani K; Ohnishi K
    J Bacteriol; 1977 Feb; 129(2):589-98. PubMed ID: 320186
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enzymes of the isoleucine-valine pathway in Acinetobacter.
    Twarog R
    J Bacteriol; 1972 Jul; 111(1):37-46. PubMed ID: 4669215
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.