These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 4151996)

  • 1. Adaptive control of the ethanol-forming system in heterolactic acid bacteria. Effect of growth conditions on alcohol dehydrogenase synthesis in Leuconostoc mesenteroides.
    Ito S; Hashiba H; Eguchi Y
    J Biochem; 1974 Mar; 75(3):577-81. PubMed ID: 4151996
    [No Abstract]   [Full Text] [Related]  

  • 2. NAD(P)H regeneration is the key for heterolactic fermentation of hexoses in Oenococcus oeni.
    Maicas S; Ferrer S; Pardo I
    Microbiology (Reading); 2002 Jan; 148(Pt 1):325-332. PubMed ID: 11782525
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Significance of phosphoglucose isomerase for the shift between heterolactic and mannitol fermentation of fructose by Oenococcus oeni.
    Richter H; De Graaf AA; Hamann I; Unden G
    Arch Microbiol; 2003 Dec; 180(6):465-70. PubMed ID: 14608457
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production of polyol dehydrogenases in bacteria.
    Yamanaka K; Sakai S
    Can J Microbiol; 1968 Apr; 14(4):391-6. PubMed ID: 4967217
    [No Abstract]   [Full Text] [Related]  

  • 5. Diacetyl and acetoin production from the co-metabolism of citrate and xylose by Leuconostoc mesenteroides subsp. mesenteroides.
    Schmitt P; Vasseur C; Phalip V; Huang DQ; Diviès C; Prévost H
    Appl Microbiol Biotechnol; 1997 Jun; 47(6):715-8. PubMed ID: 9237392
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Growth and energetics of Leuconostoc mesenteroides NRRL B-1299 during metabolism of various sugars and their consequences for dextransucrase production.
    Dols M; Chraibi W; Remaud-Simeon M; Lindley ND; Monsan PF
    Appl Environ Microbiol; 1997 Jun; 63(6):2159-65. PubMed ID: 9172334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The degradation of 2-keto-D-gluconate-C14, D-gluconate-C14, and D-fructose-C14 by Leuconostoc mesenteroides.
    BLAKLEY ER; BLACKWOOD AC
    Can J Microbiol; 1957 Aug; 3(5):741-4. PubMed ID: 13460823
    [No Abstract]   [Full Text] [Related]  

  • 8. Kinases in Leuconostoc mesenteroides.
    DeMoss RD
    J Bacteriol; 1968 May; 95(5):1692-7. PubMed ID: 5650076
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of the mannitol pathway in fructose fermentation of Oenococcus oeni due to limiting redox regeneration capacity of the ethanol pathway.
    Richter H; Hamann I; Unden G
    Arch Microbiol; 2003 Apr; 179(4):227-33. PubMed ID: 12677361
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous analysis of NAD- and NADP-linked activities of dual nucleotide-specific dehydrogenases. Application to Leuconostoc mesenteroides glucose-6-phosphate dehydrogenase.
    Levy HR; Daouk GH
    J Biol Chem; 1979 Jun; 254(11):4843-7. PubMed ID: 35541
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pathway and regulation of erythritol formation in Leuconostoc oenos.
    Veiga-da-Cunha M; Santos H; Van Schaftingen E
    J Bacteriol; 1993 Jul; 175(13):3941-8. PubMed ID: 8391532
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glucose-6-phosphate dehydrogenase from Leuconostoc mesenteroides: ligand-induced conformational changes.
    Kurlandsky SB; Hilburger AC; Levy HR
    Arch Biochem Biophys; 1988 Jul; 264(1):93-102. PubMed ID: 3293533
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of an arginine residue in the dual coenzyme-specific glucose-6-phosphate dehydrogenase from Leuconostoc mesenteroides that plays a key role in binding NADP+ but not NAD+.
    Levy HR; Vought VE; Yin X; Adams MJ
    Arch Biochem Biophys; 1996 Feb; 326(1):145-51. PubMed ID: 8579362
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alcohol dehydrogenase from Leuconostoc mesenteroides: molecular properties in comparison with the yeast and horse liver enzyme.
    Schneider-Bernlöhr H; Fiedler H; Gerber M; Weber C; Zeppezauer M
    Int J Biochem; 1981; 13(12):1215-24. PubMed ID: 6797855
    [No Abstract]   [Full Text] [Related]  

  • 15. COUPLING OF REDUCED PYRIDINE NUCLEOTIDE IN LEUCONOSTOC MESENTEROIDES.
    KEMP RG; ROSE IA
    J Biol Chem; 1964 Sep; 239():2998-3006. PubMed ID: 14217888
    [No Abstract]   [Full Text] [Related]  

  • 16. Acetaldehyde: an intermediate in the formation of ethanol from glucose by lactic acid bacteria.
    Lees GJ
    J Dairy Res; 1976 Feb; 43(1):63-73. PubMed ID: 177470
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression of the gene for NAD-dependent glucose-6-phosphate dehydrogenase from Leuconostoc mesenteroides cloned in Escherichia coli K-12.
    Murphy NB; McConnell DJ; Schwarz TF
    J Bacteriol; 1987 Jan; 169(1):334-9. PubMed ID: 3025177
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fermentation of glucose-C14 and xylose-C14 by various strains of Leuconostoc mesenteroides.
    BLACKWOOD AC; BLAKLEY ER
    J Bacteriol; 1960 Mar; 79(3):411-6. PubMed ID: 13801206
    [No Abstract]   [Full Text] [Related]  

  • 19. Introduction of bifunctional alcohol/acetaldehyde dehydrogenase gene (adhE) in Fructobacillus fructosus settled its fructophilic characteristics.
    Maeno S; Kajikawa A; Dicks L; Endo A
    Res Microbiol; 2019; 170(1):35-42. PubMed ID: 30291951
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tandem dye-ligand chromatography and biospecific elution applied to the purification of glucose-6-phosphate dehydrogenase from Leuconostoc mesenteroides.
    Hey Y; Dean PD
    Biochem J; 1983 Feb; 209(2):363-71. PubMed ID: 6847623
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.