BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 4152)

  • 21. The role of sulfhydryl groups in contraction of vascular smooth muscle.
    Neering IR; Glover WE
    J Pharmacol Exp Ther; 1979 Feb; 208(2):335-40. PubMed ID: 216795
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of sulfhydryl reagents on tetraethylammonium transport in rat renal brush border membranes.
    Hori R; Maegawa H; Okano T; Takano M; Inui K
    J Pharmacol Exp Ther; 1987 Jun; 241(3):1010-6. PubMed ID: 3037062
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The effect of thiol reagents on GABA transport in rat brain synaptosomes.
    Troeger MB; Wilson DF; Erecińska M
    FEBS Lett; 1984 Jun; 171(2):303-8. PubMed ID: 6327392
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Production of glycolic acid by the cells of Chlorella pyrenoidosa].
    Maksimova IV; Dal' ES
    Mikrobiologiia; 1975; 44(6):1057-63. PubMed ID: 2841
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inhibition of outer hair cell electromotility by sulfhydryl specific reagents.
    Kalinec F; Kachar B
    Neurosci Lett; 1993 Jul; 157(2):231-4. PubMed ID: 8233059
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The alkaline adenosine triphosphatase activity of 30S dynein after modification of the SH groups. Possible involvement of some of the most reactive SH groups.
    Shimizu T
    J Biochem; 1979 Oct; 86(4):1139-45. PubMed ID: 40967
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Role of membrane sulfhydryl groups in stimulation of renin secretion by sulfhydryl reagents.
    Doh PS; Lee CJ; Hwang PM; Cho KW; Honeyman TW; Park CS
    Kidney Int; 1991 May; 39(5):867-73. PubMed ID: 1648645
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The relationship between the rate of phosphate absorption and protein synthesis during phosphate starvation in Chorella pyrenoidosa.
    Jeanjean R
    FEBS Lett; 1973 May; 32(1):149-51. PubMed ID: 4715675
    [No Abstract]   [Full Text] [Related]  

  • 29. The effect of protein-functional-group reagents on D-gluconate transport in Bacillus subtilis.
    O'Sullivan MP; McKillen MN
    Biochem Soc Trans; 1976; 4(5):882-4. PubMed ID: 12060
    [No Abstract]   [Full Text] [Related]  

  • 30. Curcumin Protects -SH Groups and Sulphate Transport after Oxidative Damage in Human Erythrocytes.
    Morabito R; Falliti G; Geraci A; Spada GL; Marino A
    Cell Physiol Biochem; 2015; 36(1):345-57. PubMed ID: 25967973
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Net phosphate transport in phosphate-starved Candida utilis: relationships with pH and K+.
    Bourne RM
    Biochim Biophys Acta; 1991 Aug; 1067(1):81-8. PubMed ID: 1868105
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Synthesis and degradation of the phosphate transport system in Chlorella pyrenoidosa].
    Jeanjean R; Ducet G
    Biochimie; 1974; 56(4):613-5. PubMed ID: 4424584
    [No Abstract]   [Full Text] [Related]  

  • 33. Effects of sulfhydryl reagents on brain microtubule-associated ATPase activity in vitro.
    Wallin M; Larsson H; Edström A
    J Neurochem; 1979 Nov; 33(5):1095-9. PubMed ID: 41028
    [No Abstract]   [Full Text] [Related]  

  • 34. Studies on the molecular species of DNA polymerase extracted from rat ascites hepatoma cells.
    Tanabe K; Takahashi T
    J Biochem; 1976 Jan; 79(1):85-90. PubMed ID: 7555
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Phosphate transport in Micrococcus lysodeikticus.
    Friedberg I
    Biochim Biophys Acta; 1977 May; 466(3):451-60. PubMed ID: 15596
    [TBL] [Abstract][Full Text] [Related]  

  • 36. NH4C1 activation of the fluorescence yield in CO2-starved Chlorella pyrenoidosa.
    Slovacek RE; Bannister TT
    Biochim Biophys Acta; 1973 Oct; 325(1):114-9. PubMed ID: 4770722
    [No Abstract]   [Full Text] [Related]  

  • 37. Different sidedness of functionally homologous essential thiols in two membrane-bound phosphotransferase enzymes of Escherichia coli detected by permeant and nonpermeant thiol reagents.
    Haguenauer-Tsapis R; Kepes A
    J Biol Chem; 1980 Jun; 255(11):5075-81. PubMed ID: 6246097
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Orthophosphate influx and efflux rates of Chlorella fusca measured in a continuous turbidostat culture with 32P under various conditions.
    Schneider K; Frischknecht K
    Arch Microbiol; 1977 Dec; 115(3):339-46. PubMed ID: 603340
    [No Abstract]   [Full Text] [Related]  

  • 39. Studies of phosphate transport in Escherichia coli. I. Reexamination of the effect of osmotic and cold shock on phosphate uptake and some attempts to restore uptake with phosphate binding protein.
    Rae AS; Strickland KP; Medveczky N; Rosenberg H
    Biochim Biophys Acta; 1976 May; 433(3):555-63. PubMed ID: 819034
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Inhibition of erythrocyte aggregation by the silicates is reversed by masking the erythrocyte sulphydryl groups.
    Ramsohoye PV; Fritz IB
    Biochem Soc Trans; 1997 Feb; 25(1):4S. PubMed ID: 9056902
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.