These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 4152574)

  • 21. Effect of potassium cyanate on the catalytic activities of carbamyl phosphate synthetase.
    Anderson PM; Carlson JD; Rosenthal GA; Meister A
    Biochem Biophys Res Commun; 1973 Nov; 55(1):246-52. PubMed ID: 4361273
    [No Abstract]   [Full Text] [Related]  

  • 22. Regulation by ammonia of nitrate reductase synthesis and activity in Chlamydomonas reinhardi.
    Herrera J; Paneque A; Maldonado JM; Barea JL; Losada M
    Biochem Biophys Res Commun; 1972 Aug; 48(4):996-1003. PubMed ID: 4404625
    [No Abstract]   [Full Text] [Related]  

  • 23. Control of nicotinamide nucleotide-linked oxidoreductions in rat-liver mitochondria.
    Tager JM; Papa S; de Haan EJ; D'Aloya R; Quagliariello E
    Biochim Biophys Acta; 1969 Jan; 172(1):7-19. PubMed ID: 4178849
    [No Abstract]   [Full Text] [Related]  

  • 24. Observations on the conversion of N-acetylglutamate to proline in extracts of Escherichia coli.
    Reed DE; Lukens LN
    J Biol Chem; 1966 Jan; 241(2):264-70. PubMed ID: 5323584
    [No Abstract]   [Full Text] [Related]  

  • 25. Transport of sugars and amino acids in bacteria. X. Sources of energy and energy coupling reactions of the active transport systems for isoleucine and proline in E. coli.
    Kobayashi H; Kin E; Anraku Y
    J Biochem; 1974 Aug; 76(2):251-61. PubMed ID: 4154322
    [No Abstract]   [Full Text] [Related]  

  • 26. [Effect of nitrate reduction on carbon metabolism. 1. Changes in several enzyme activities in carbon metabolism in Escherichia coli by nitrate reduction].
    Takahara K; Ishimoto M
    Seikagaku; 1972; 44(3):116-23. PubMed ID: 4337580
    [No Abstract]   [Full Text] [Related]  

  • 27. Relationships between beta-galactoside transport system and phosphoenolpyruvate-dependent phosphotransferase system in Escherichia coli K12.
    Burd GI; Bol'shakova TN; Gershanovich VN
    Mol Biol; 1973; 7(3):252-6. PubMed ID: 4589445
    [No Abstract]   [Full Text] [Related]  

  • 28. A bifunctional enzyme (delta 1-pyrroline-5-carboxylate synthetase) catalyzes the first two steps in proline biosynthesis in plants.
    Hu CA; Delauney AJ; Verma DP
    Proc Natl Acad Sci U S A; 1992 Oct; 89(19):9354-8. PubMed ID: 1384052
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evidence for the formation of a gamma-phosphorylated glutamyl residue in the Escherichia coli acetate kinase reaction.
    Todhunter JA; Purich DL
    Biochem Biophys Res Commun; 1974 Sep; 60(1):273-80. PubMed ID: 4370922
    [No Abstract]   [Full Text] [Related]  

  • 30. Purification and properties of glycerol kinase from Escherichia coli.
    Hayashi SI; Lin EC
    J Biol Chem; 1967 Mar; 242(5):1030-5. PubMed ID: 5335908
    [No Abstract]   [Full Text] [Related]  

  • 31. Cytochromes in Streptococcus faecalis var. zymogenes grown in a haematin-containing medium.
    Ritchey TW; Seeley HW
    J Gen Microbiol; 1974 Dec; 85(2):220-8. PubMed ID: 4155716
    [No Abstract]   [Full Text] [Related]  

  • 32. Changes in accessibility of the membrane bound transport enzyme glucose phosphotransferase of E. coli to protein group reagents in presence of substrate or absence of energy source.
    Haguenauer-Tsapis R; Kepes A
    Biochem Biophys Res Commun; 1973 Oct; 54(4):1335-41. PubMed ID: 4585289
    [No Abstract]   [Full Text] [Related]  

  • 33. The metabolism of amino acids in the bovine lens. Their oxidation as a source of energy.
    Trayhurn P; van Heyningen R
    Biochem J; 1973 Sep; 136(1):67-75. PubMed ID: 4772629
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of glucose concentration on a number of enzymes involved in the aerobic and anaerobic utilization of glucose in turbidostat-cultures of Escherichia coli.
    Doelle HW; Hollywood N; Westwood AW
    Microbios; 1974; 9(36):221-32. PubMed ID: 4275702
    [No Abstract]   [Full Text] [Related]  

  • 35. Regulation of succinate dehydrogenase in Escherichia coli.
    Ruíz-Herrera J; García LG
    J Gen Microbiol; 1972 Aug; 72(1):29-35. PubMed ID: 4341933
    [No Abstract]   [Full Text] [Related]  

  • 36. [Proline production regulation in E. coli K 12].
    Condamine H
    Ann Inst Pasteur (Paris); 1971 Feb; 120(2):126-43. PubMed ID: 4928229
    [No Abstract]   [Full Text] [Related]  

  • 37. Metabolism of proline and the hydroxyprolines.
    Adams E; Frank L
    Annu Rev Biochem; 1980; 49():1005-61. PubMed ID: 6250440
    [No Abstract]   [Full Text] [Related]  

  • 38. An enzyme reducing adenosine 1N-oxide in Escherichia coli, amine N-oxide reductase.
    Sagai M; Ishimoto M
    J Biochem; 1973 Apr; 73(4):843-59. PubMed ID: 4578389
    [No Abstract]   [Full Text] [Related]  

  • 39. [The arginine operon of Escherichia coli].
    Sand G; Glansdorff N
    Arch Int Physiol Biochim; 1967 Jun; 75(3):568-9. PubMed ID: 4167743
    [No Abstract]   [Full Text] [Related]  

  • 40. The beta-glucoside system of Escherichia coli. 3. Properties of a P-HPr: beta-glucoside phosphotransferase extracted from membranes with detergent.
    Rose SP; Fox CF
    J Supramol Struct; 1973; 1(6):565-87. PubMed ID: 4592819
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.