BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 4152953)

  • 21. Mechanistic studies of glutamine synthetase from Escherichia coli. An integrated mechanism for biosynthesis, transferase, ATPase reaction.
    Rhee SG; Chock PB; Stadtman ER
    Biochimie; 1976; 58(1-2):35-49. PubMed ID: 8153
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Some characteristics of the binding of substrates of glutamine synthetase from Escherichia coli.
    Denton MD; Ginsburg A
    Biochemistry; 1970 Feb; 9(3):617-32. PubMed ID: 4984523
    [No Abstract]   [Full Text] [Related]  

  • 23. Studies on the reaction mechanism of adenosine triphosphate: glutamine synthetase adenylyltransferase from Escherichia coli B. Evidence for an ordered mechanism.
    Wohlhueter RM; Ebner E; Wolf DH
    J Biol Chem; 1972 Jul; 247(13):4213-8. PubMed ID: 4402513
    [No Abstract]   [Full Text] [Related]  

  • 24. Mechanistic studies of glutamine synthetase from Escherichia coli: kinetics of ADP and orthophosphate binding to the unadenylylated enzyme.
    Rhee SG; Chock PB
    Biochemistry; 1976 Apr; 15(8):1755-60. PubMed ID: 5113
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fluorometric studies of aza-epsilon-adenylylated glutamine synthetase from Escherichia coli.
    Rhee SG; Ubom GA; Hunt JB; Chock PB
    J Biol Chem; 1981 Jun; 256(12):6010-6. PubMed ID: 6113242
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A stereochemical method for detection of ATP terminal phosphate transfer in enzymatic reactions. Glutamine synthetase.
    Midelfort CF; Rose IA
    J Biol Chem; 1976 Oct; 251(19):5881-7. PubMed ID: 9406
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Distance determinations between the metal ion sites of Escherichia coli glutamine synthetase by electron paramagnetic resonance using Cr(III)--nucleotides as paramagnetic substrate analogues.
    Balakrishnan MS; Villafranca JJ
    Biochemistry; 1978 Aug; 17(17):3531-8. PubMed ID: 28753
    [No Abstract]   [Full Text] [Related]  

  • 28. Studies on ribonucleic acid ligase. Characterization of an adenosine triphosphate-inorganic pyrophosphate exchange reaction and demonstration of an enzyme-adenylate complex with T4 bacteriophage-induced enzyme.
    Cranston JW; Silber R; Malathi VG; Hurwitz J
    J Biol Chem; 1974 Dec; 249(23):7447-56. PubMed ID: 4373468
    [No Abstract]   [Full Text] [Related]  

  • 29. Some effects of adenylylation on the biosynthetic properties of the glutamine synthetase from Escherichia coli.
    Ginsburg A; Yeh J; Hennig SB; Denton MD
    Biochemistry; 1970 Feb; 9(3):633-49. PubMed ID: 4906326
    [No Abstract]   [Full Text] [Related]  

  • 30. Studies on the mechanism of inhibition of glutamine synthetase by methionine sulfoximine.
    Ronzio RA; Rowe WB; Meister A
    Biochemistry; 1969 Mar; 8(3):1066-75. PubMed ID: 4305484
    [No Abstract]   [Full Text] [Related]  

  • 31. Nuclear magnetic resonance study of the complexes of manganese(II) and fully adenylated glutamine synthetase (Escherichia coli W). Frequency, temperature, and substrate dependence of water proton relaxation rates.
    Villafranca JJ; Wedler FC
    Biochemistry; 1974 Jul; 13(16):3286-91. PubMed ID: 4152181
    [No Abstract]   [Full Text] [Related]  

  • 32. Mg2+ is bound to glutamine synthetase extracted from bovine or ovine brain in the presence of L-methionine-S-sulfoximine phosphate.
    Maurizi MR; Pinkofsky HB; McFarland PJ; Ginsburg A
    Arch Biochem Biophys; 1986 Apr; 246(1):494-500. PubMed ID: 2870682
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Glutamine synthetase. 8. Purification and some properties of the enzyme from rat liver.
    Iqbal K; Wu C
    Enzyme; 1971; 12(5):553-60. PubMed ID: 4402063
    [No Abstract]   [Full Text] [Related]  

  • 34. Spinach leaf phosphoenolpyruvate carboxylase: purification, properties, and kinetic studies.
    Miziorko HM; Nowak T; Mildvan AS
    Arch Biochem Biophys; 1974 Jul; 163(1):378-89. PubMed ID: 4212347
    [No Abstract]   [Full Text] [Related]  

  • 35. Cytidine triphosphate synthetase. Covalent intermediates and mechanisms of action.
    Levitzki A; Koshland DE
    Biochemistry; 1971 Aug; 10(18):3365-71. PubMed ID: 4940761
    [No Abstract]   [Full Text] [Related]  

  • 36. Inhibition of gamma-glutamylcysteine synthetase by L-methionine-S-sulfoximine.
    Richman PG; Orlowski M; Meister A
    J Biol Chem; 1973 Oct; 248(19):6684-90. PubMed ID: 4147652
    [No Abstract]   [Full Text] [Related]  

  • 37. Interaction of a new gamma-glutamyl-phosphate analog, 4-(phosphonoacetyl)-L-alpha-aminobutyrate, with glutamine synthetase enzymes from Escherichia coli, plant, and mammalian sources.
    Wedler FC; Horn BR; Roby WG
    Arch Biochem Biophys; 1980 Jul; 202(2):482-90. PubMed ID: 6109519
    [No Abstract]   [Full Text] [Related]  

  • 38. Purification and properties of glutamine synthetase from Bacillus stearothermophilus.
    Hachimori A; Matsunaga A; Shimizu M; Samejima T; Noso Y
    Biochim Biophys Acta; 1974 Jun; 350(2):461-74. PubMed ID: 4152611
    [No Abstract]   [Full Text] [Related]  

  • 39. Purification and properties of Bacillus subtilis nucleoside diphosphokinase.
    Sedmak J; Ramaley R
    J Biol Chem; 1971 Sep; 246(17):5365-72. PubMed ID: 4999354
    [No Abstract]   [Full Text] [Related]  

  • 40. Ribonucleic acid chain elongation by Escherichia coli ribonucleic acid polymerase. I. Isolation of ternary complexes and the kinetics of elongation.
    Rhodes G; Chamberlin MJ
    J Biol Chem; 1974 Oct; 249(20):6675-83. PubMed ID: 4608711
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.