These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 415305)

  • 1. Coupling of lac mRNA transcription to translation in Escherichia coli cell extracts.
    Jacobs KA; Shen V; Schlessinger D
    Proc Natl Acad Sci U S A; 1978 Jan; 75(1):158-61. PubMed ID: 415305
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inefficient translation initiation causes premature transcription termination in the lacZ gene.
    Stanssens P; Remaut E; Fiers W
    Cell; 1986 Mar; 44(5):711-8. PubMed ID: 3081264
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cooperation between translating ribosomes and RNA polymerase in transcription elongation.
    Proshkin S; Rahmouni AR; Mironov A; Nudler E
    Science; 2010 Apr; 328(5977):504-8. PubMed ID: 20413502
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Release of nascent trp mRNA from the operon DNA in chloramphenicol-treated cells of Escherichia coli.
    Ishii S; Imamoto F
    Mol Gen Genet; 1978 Apr; 161(1):31-7. PubMed ID: 353498
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prokaryotic coupled transcription-translation.
    Chen HZ; Zubay G
    Methods Enzymol; 1983; 101():674-90. PubMed ID: 6310341
    [No Abstract]   [Full Text] [Related]  

  • 6. Effects of heterologous ribosomal binding sites on the transcription and translation of the lacZ gene of Escherichia coli.
    Looman AC; de Gruyter M; Vogelaar A; van Knippenberg PH
    Gene; 1985; 37(1-3):145-54. PubMed ID: 3932130
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Residual polarity and transcription-translation coupling during recovery from chloramphenicol or fusidic acid.
    Pastushok C; Kennell D
    J Bacteriol; 1974 Feb; 117(2):631-40. PubMed ID: 4359650
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Positive control of lac operon expression in vitro by guanosine 5'-diphosphate 3'-diphosphate.
    Primakoff P; Artz SW
    Proc Natl Acad Sci U S A; 1979 Apr; 76(4):1726-30. PubMed ID: 109832
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcription and translation initiation frequencies of the Escherichia coli lac operon.
    Kennell D; Riezman H
    J Mol Biol; 1977 Jul; 114(1):1-21. PubMed ID: 409848
    [No Abstract]   [Full Text] [Related]  

  • 10. Activities of constitutive promoters in Escherichia coli.
    Liang S; Bipatnath M; Xu Y; Chen S; Dennis P; Ehrenberg M; Bremer H
    J Mol Biol; 1999 Sep; 292(1):19-37. PubMed ID: 10493854
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro formation of beta-galactosidase with a template containing the lac genes fused to gene ilvD.
    Noti JD; Umbarger HE
    J Bacteriol; 1980 Oct; 144(1):291-9. PubMed ID: 6774961
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Translation inhibitors stabilize Escherichia coli mRNAs independently of ribosome protection.
    Lopez PJ; Marchand I; Yarchuk O; Dreyfus M
    Proc Natl Acad Sci U S A; 1998 May; 95(11):6067-72. PubMed ID: 9600918
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The low expression level of pokeweed antiviral protein (PAP) gene in Escherichia coli by the inducible lac promoter is due to inefficient transcription and translation and not to the toxicity of the PAP.
    Xu J; Kaloyanova D; Ivanov IG; AbouHaidar MG
    Arch Biochem Biophys; 1998 Mar; 351(1):82-8. PubMed ID: 9500850
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell-free expression of the beta-galactosidase gene: a model system to study the effects of nucleotide analogs on transcription-translation.
    Zimmer M; Scheit KH
    Nucleic Acids Symp Ser; 1981; (9):225-8. PubMed ID: 6795597
    [TBL] [Abstract][Full Text] [Related]  

  • 15. lac Transcription in Escherichia coli cells treated with chloramphenicol.
    Graham MY; Tal M; Schlessinger D
    J Bacteriol; 1982 Jul; 151(1):251-61. PubMed ID: 7045075
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Disruption of transcription-translation coordination in Escherichia coli leads to premature transcriptional termination.
    Zhu M; Mori M; Hwa T; Dai X
    Nat Microbiol; 2019 Dec; 4(12):2347-2356. PubMed ID: 31451774
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coupling of rRNA transcription and ribosomal assembly in vivo. Formation of active ribosomal subunits in Escherichia coli requires transcription of rRNA genes by host RNA polymerase which cannot be replaced by bacteriophage T7 RNA polymerase.
    Lewicki BT; Margus T; Remme J; Nierhaus KH
    J Mol Biol; 1993 Jun; 231(3):581-93. PubMed ID: 8515441
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Processivity errors of gene expression in Escherichia coli.
    Jørgensen F; Kurland CG
    J Mol Biol; 1990 Oct; 215(4):511-21. PubMed ID: 2121997
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two Old Dogs, One New Trick: A Review of RNA Polymerase and Ribosome Interactions during Transcription-Translation Coupling.
    Conn AB; Diggs S; Tam TK; Blaha GM
    Int J Mol Sci; 2019 May; 20(10):. PubMed ID: 31137816
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of nucleotide analogs on cell-free gene expression.
    Zimmer M; Scheit KH
    Nucleic Acids Res; 1984 Mar; 12(5):2243-58. PubMed ID: 6424097
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.