These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 4153348)

  • 1. Energization of energy-dependent transhydrogenase of Escherichia coli at a second site of energy conservation.
    Bragg PD; Hou C
    Arch Biochem Biophys; 1974 Aug; 163(2):614-6. PubMed ID: 4153348
    [No Abstract]   [Full Text] [Related]  

  • 2. Energization of phenylalanine transport and energy-dependent transhydrogenase by ATP in cytochrome-deficient Escherichia coli K12.
    Singh AP; Bragg PD
    Biochem Biophys Res Commun; 1974 Apr; 57(4):1200-6. PubMed ID: 4151532
    [No Abstract]   [Full Text] [Related]  

  • 3. Function of energy-dependent transhydrogenase in Escherichia coli.
    Bragg PD; Davies PL; Hou C
    Biochem Biophys Res Commun; 1972 Jun; 47(5):1248-55. PubMed ID: 4337747
    [No Abstract]   [Full Text] [Related]  

  • 4. Energy conservation in membranes of mutants of Escherichia coli defective in oxidative phosphorylation.
    Nieuwenhuis FJ; Kanner BI; Gutnick DL; Postma PW; van Dam K
    Biochim Biophys Acta; 1973 Oct; 325(1):62-71. PubMed ID: 4149157
    [No Abstract]   [Full Text] [Related]  

  • 5. Energy-linked and energy-independent transhydrogenase activities in Escherichia coli vesicles.
    Houghton RL; Fisher RJ; Sanadi DR
    Biochim Biophys Acta; 1975 Jul; 396(1):17-23. PubMed ID: 167848
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transport of succinate in Escherichia coli. II. Characteristics of uptake and energy coupling with transport in membrane preparations.
    Rayman MK; Lo TC; Sanwal BD
    J Biol Chem; 1972 Oct; 247(19):6332-9. PubMed ID: 4568614
    [No Abstract]   [Full Text] [Related]  

  • 7. Ubiquinone-mediated coupling of NADH dehydrogenase to active transport in membrane vesicles from Escherichia coli.
    Stroobant P; Kaback HR
    Proc Natl Acad Sci U S A; 1975 Oct; 72(10):3970-4. PubMed ID: 672
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of silver ions on the respiratory chain of Escherichia coli.
    Bragg PD; Rainnie DJ
    Can J Microbiol; 1974 Jun; 20(6):883-9. PubMed ID: 4151872
    [No Abstract]   [Full Text] [Related]  

  • 9. [Transhydrogenase as an additional site of energy accumulation in the E. coli respiratory chain].
    Chetkauskaite AV; Grinius LL
    Biokhimiia; 1979 Jun; 44(6):1101-9. PubMed ID: 37931
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanisms of active transport in isolated membrane vesicles. I. The site of energy coupling between D-lactic dehydrogenase and beta-galactoside transport in Escherichia coli membrane vesicles.
    Barnes EM; Kaback HR
    J Biol Chem; 1971 Sep; 246(17):5518-22. PubMed ID: 4330922
    [No Abstract]   [Full Text] [Related]  

  • 11. Oxidative phosphorylation in Escherichia coli K-12: the genetic and biochemical characterisations of a strain carrying a mutation in the uncB gene.
    Butlin JD; Cox GB; Gibson F
    Biochim Biophys Acta; 1973 Feb; 292(2):366-75. PubMed ID: 4145024
    [No Abstract]   [Full Text] [Related]  

  • 12. An Escherichia coli mutant conditionally altered in respiratory chain components.
    Cox JC; Jurtshuk P
    Membr Biochem; 1990; 9(1):47-60. PubMed ID: 2150214
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ascorbate-phenazine methosulfate-dependent membrane energization in respiratory chain mutants of Escherichia coli.
    Singh AP; Bragg PD
    Biochem Biophys Res Commun; 1976 Sep; 72(1):195-201. PubMed ID: 791275
    [No Abstract]   [Full Text] [Related]  

  • 14. Mechanisms of active transport in isolated bacterial membrane vesicles. 8. The transport of amino acids by membranes prepared from Escherichia coli.
    Lombardi FJ; Kaback HR
    J Biol Chem; 1972 Dec; 247(24):7844-57. PubMed ID: 4344983
    [No Abstract]   [Full Text] [Related]  

  • 15. Steady-state kinetics and the inactivation by 2,3-butanedione of the energy-independent transhydrogenase of Escherichia coli cell membranes.
    Homyk M; Bragg PD
    Biochim Biophys Acta; 1979 Dec; 571(2):201-17. PubMed ID: 389287
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of NAD(P)+-transhydrogenase levels in Escherichia coli.
    Houghton RL; Fisher RJ; Sanadi DR
    Arch Biochem Biophys; 1976 Oct; 176(2):747-52. PubMed ID: 791150
    [No Abstract]   [Full Text] [Related]  

  • 17. Different effects of 2-n-heptyl-4-hydroxyquinoline-N-oxide on oxygen and nitrate respiration in Klebsiella aerogenes.
    Knook DL; Kauffman HF; Van 'T Riet J
    Arch Biochem Biophys; 1974 Dec; 165(2):449-55. PubMed ID: 4155268
    [No Abstract]   [Full Text] [Related]  

  • 18. Transport of sugars and amino acids in bacteria. X. Sources of energy and energy coupling reactions of the active transport systems for isoleucine and proline in E. coli.
    Kobayashi H; Kin E; Anraku Y
    J Biochem; 1974 Aug; 76(2):251-61. PubMed ID: 4154322
    [No Abstract]   [Full Text] [Related]  

  • 19. Isolation and partial characterization of a mutant of Escherichia coli lacking pyridine nucleotide transhydrogenase.
    Zahl KJ; Rose C; Hanson RL
    Arch Biochem Biophys; 1978 Oct; 190(2):598-602. PubMed ID: 363055
    [No Abstract]   [Full Text] [Related]  

  • 20. Synthesis and sideedness of membrane-bound respiratory nitrate reductase (EC1.7.99.4) in Escherichia coli lacking cytochromes.
    Biochem J; 1975 May; 148(2):329-33. PubMed ID: 168887
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.