These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 4153602)

  • 1. Comparative aspects of glucose catabolism in Staphylococcus aureus and S. epidermidis.
    Blumenthal HJ; Huettner CF; Montiel FA
    Ann N Y Acad Sci; 1974 Jul; 236(0):105-14. PubMed ID: 4153602
    [No Abstract]   [Full Text] [Related]  

  • 2. Isoenzymes of NADP + -and NAD + -glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase in rat adipose tissue.
    Beitner R; Naor Z
    Biochim Biophys Acta; 1972 Aug; 276(2):572-5. PubMed ID: 4403530
    [No Abstract]   [Full Text] [Related]  

  • 3. Turnover of NAD in bacteria.
    Iizuka M; Mizuno D
    Biochim Biophys Acta; 1967 Nov; 148(2):320-7. PubMed ID: 4383794
    [No Abstract]   [Full Text] [Related]  

  • 4. An evaluation of regulation of the hexose monophosphate shunt in Escherichia coli.
    Orthner CL; Pizer LI
    J Biol Chem; 1974 Jun; 249(12):3750-5. PubMed ID: 4151946
    [No Abstract]   [Full Text] [Related]  

  • 5. On the effect of barbital on Streptomyces mediterranei.
    Ruczaj Z; Ostrowska-Krysiak B; Sawnor-Korszyńska D; Raczyńska-Bojanowska K
    Acta Microbiol Pol B; 1972; 4(4):201-9. PubMed ID: 4405006
    [No Abstract]   [Full Text] [Related]  

  • 6. Metabolic alterations in the axotomized superior cervical ganglion of the rat. II. The pentose phosphate pathway.
    Härkönen MH; Kauffman FC
    Brain Res; 1974 Jan; 65(1):141-57. PubMed ID: 4149252
    [No Abstract]   [Full Text] [Related]  

  • 7. Coenzyme specificity of enzymes in the oxidative pentose phosphate pathway of Gluconobacter oxydans.
    Tonouchi N; Sugiyama M; Yokozeki K
    Biosci Biotechnol Biochem; 2003 Dec; 67(12):2648-51. PubMed ID: 14730146
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Defects of glucose-6-phosphate and 6-phosphogluconate dehydrogenases in Neurospora and their pleiotropic effects.
    Scott WA; Mahoney E
    Curr Top Cell Regul; 1976; 10():205-36. PubMed ID: 3390
    [No Abstract]   [Full Text] [Related]  

  • 9. Purification and properties of glucose-6-phosphate dehydrogenase (NADP+/NAD+) and 6-phosphogluconate dehydrogenase (NADP+/NAD+) from methanol-grown Pseudomonas C.
    Ben-Bassat A; Goldberg I
    Biochim Biophys Acta; 1980 Jan; 611(1):1-10. PubMed ID: 7350909
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzymes of glucose catabolism in cell-free extracts of non-fermentative marine eubacteria.
    Baumann L; Baumann P
    Can J Microbiol; 1973 Feb; 19(2):302-4. PubMed ID: 4266757
    [No Abstract]   [Full Text] [Related]  

  • 11. Selective increases in type I hydrogen from reduced nicotinamide-adenine dinucleotide phosphate in liver from phenobarbitone-treated rats.
    Altman FP
    Biochem J; 1971 Nov; 125(2):21P-22P. PubMed ID: 4401374
    [No Abstract]   [Full Text] [Related]  

  • 12. The effect of oxygen and pH on the glucose metabolism of Lactobacillus casei var. rhamnosus ATCC 7469.
    Manderson GJ; Doelle HW
    Antonie Van Leeuwenhoek; 1972; 38(2):223-40. PubMed ID: 4537446
    [No Abstract]   [Full Text] [Related]  

  • 13. Glucose 6-phosphate and 6-phosphogluconate dehydrogenases and their control mechanisms in Escherichia coli K-12.
    Westwood AW; Doelle HW
    Microbios; 1974; 9(35):143-65. PubMed ID: 4151756
    [No Abstract]   [Full Text] [Related]  

  • 14. Some metabolic and morphological alterations in Yoshida ascites tumour cells caused by 6-aminonicotinamide.
    Ofori-Nkansah N; von Bruchhausen F
    Z Krebsforsch Klin Onkol Cancer Res Clin Oncol; 1972; 77(1):64-76. PubMed ID: 4259986
    [No Abstract]   [Full Text] [Related]  

  • 15. Studies on reduction of azo-linkages in human placental homogenates.
    Juchau MR; Krasner J; Yaffe SJ
    Biochem Pharmacol; 1968 Sep; 17(9):1969-79. PubMed ID: 4386892
    [No Abstract]   [Full Text] [Related]  

  • 16. The Bacillus subtilis yqjI gene encodes the NADP+-dependent 6-P-gluconate dehydrogenase in the pentose phosphate pathway.
    Zamboni N; Fischer E; Laudert D; Aymerich S; Hohmann HP; Sauer U
    J Bacteriol; 2004 Jul; 186(14):4528-34. PubMed ID: 15231785
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [A comparative study of the oxidation processes in the cells of typical forms and L forms of Vibrio cholerae].
    Golubkova LA; Lomov IuM; Rublev BD
    Mikrobiol Zh (1978); 1990; 52(3):16-20. PubMed ID: 2215284
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Glucose-6-phosphate transformation in the tissues of animals which have received high doses of hydroxythiamine or thiamine].
    Lashak LK; Trebukhina RV; Ostrovskiĭ IuM
    Vopr Med Khim; 1978; 24(6):822-6. PubMed ID: 32658
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thiamine deficiency and the hepatic pentose phosphate cycle.
    McCandless DW; Cassidy CE; Curley AD
    Biochem Med; 1975 Dec; 14(4):384-90. PubMed ID: 1227514
    [No Abstract]   [Full Text] [Related]  

  • 20. Evidence for two types of hydrogen atom in reduced nicotinamide-adenine dinucleotide phosphate arising from glucose 6-phosphate oxidation, based on the inhibitory action of certain steroids.
    Altmann FP; Chayen J
    Biochem J; 1970 Jun; 118(2):6P-7P. PubMed ID: 4394950
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.