These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 4153880)

  • 1. Dopaminergic neurons: drug-induced antagonism of the increase in tyrosine hydroxylase activity produced by cessation of impulse flow.
    Walters JR; Roth RH
    J Pharmacol Exp Ther; 1974 Oct; 191(1):82-91. PubMed ID: 4153880
    [No Abstract]   [Full Text] [Related]  

  • 2. Effects of alterations in impulse flow on transmitter metabolism in central dopaminergic neurons.
    Roth RH; Walters JR; Morgenroth VH
    Adv Biochem Psychopharmacol; 1974; 12(0):369-84. PubMed ID: 4153663
    [No Abstract]   [Full Text] [Related]  

  • 3. Piribedil and apomorphine: pre- and postsynaptic effects on dopamine synthesis and neuronal activity.
    Walters JR; Bunney BS; Roth RH
    Adv Neurol; 1975; 9():273-84. PubMed ID: 167566
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Some aspects of dopamine in the central nervous system.
    Carlsson A
    Adv Neurol; 1974; 5():59-68. PubMed ID: 4155236
    [No Abstract]   [Full Text] [Related]  

  • 5. Dopaminergic neurons - alteration in the sensitivity of tyrosine hydroxylase to inhibition by endovenous dopamine after cessation of impulse flow.
    Walters JR; Roth RH
    Biochem Pharmacol; 1976 Mar; 25(6):649-54. PubMed ID: 6034
    [No Abstract]   [Full Text] [Related]  

  • 6. gamma-Hydroxybutyrate: effects on nonstriatal dopaminergic neurons.
    Roth RH; Nowycky MC; Walters JR; Morgenroth VH
    Adv Biochem Psychopharmacol; 1977; 16():483-8. PubMed ID: 18897
    [No Abstract]   [Full Text] [Related]  

  • 7. Dopaminergic neurons--alteration in the kinetic properties of tyrosine hydroxylase after cessation of impulse flow.
    Morgenroth VH; Walters JR; Roth RH
    Biochem Pharmacol; 1976 Mar; 25(6):655-61. PubMed ID: 6035
    [No Abstract]   [Full Text] [Related]  

  • 8. Suppression by dopamine-agonists of the ethanol-induced stimulation of locomotor activity and brain dopamine synthesis.
    Carlsson A; Engel J; Strömbom U; Svensson TH; Waldeck B
    Naunyn Schmiedebergs Arch Pharmacol; 1974; 283(2):117-28. PubMed ID: 4278296
    [No Abstract]   [Full Text] [Related]  

  • 9. Modification of striatal acetylcholine concentration by dopamine receptor agonists and antagonists.
    Sethy VH; VAN Woert MH
    Res Commun Chem Pathol Pharmacol; 1974 May; 8(1):13-28. PubMed ID: 4847901
    [No Abstract]   [Full Text] [Related]  

  • 10. Proceedings: Effects of alterations in impulse flow on transmitter metabolism in central dopaminergic neurons.
    Roth RH; Walters JR; Morgenroth VH
    Psychopharmacol Bull; 1974 Jul; 10(3):40. PubMed ID: 4153706
    [No Abstract]   [Full Text] [Related]  

  • 11. Nonstriatal dopaminergic neurons: role of presynaptic receptors in the modulation of transmitter synthesis.
    Roth RH; Nowycky MC
    Adv Biochem Psychopharmacol; 1977; 16():465-70. PubMed ID: 18895
    [No Abstract]   [Full Text] [Related]  

  • 12. Effect of gamma-hydroxybutyrate on dopamine and dopamine metabolites in the rat striatum.
    Walters JR; Roth RH
    Biochem Pharmacol; 1972 Aug; 21(15):2111-21. PubMed ID: 4645883
    [No Abstract]   [Full Text] [Related]  

  • 13. Limbic pallidal adaptations following long-term cessation of dopaminergic transmission: lack of upregulation of dopamine receptor function.
    Heidenreich BA; Mitrovic I; Battaglia G; Napier TC
    Exp Neurol; 2004 Apr; 186(2):145-57. PubMed ID: 15026253
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dopaminergic neurons in the nematode Caenorhabditis elegans.
    Sulston J; Dew M; Brenner S
    J Comp Neurol; 1975 Sep; 163(2):215-26. PubMed ID: 240872
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of acute and chronic administration of 1,2-dimethyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline on the function of the nigrostriatal dopaminergic system in rats.
    Lorenc-Koci E; Antkiewicz-Michaluk L; Kamińska A; Lenda T; Zieba B; Wierońska J; Smiałowska M; Schulze G; Rommelspacher H
    Neuroscience; 2008 Oct; 156(4):973-86. PubMed ID: 18809471
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neurochemical characteristics of cerebral catecholamine neurons during the postnatal development in the rat.
    Hedner T; Lundborg P
    Med Biol; 1981 Aug; 59(4):212-23. PubMed ID: 6803074
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [3H]DOPA formed from [3H]tyrosine in living rat brain is not committed to dopamine synthesis.
    Cumming P; Ase A; Kuwabara H; Gjedde A
    J Cereb Blood Flow Metab; 1998 May; 18(5):491-9. PubMed ID: 9591841
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Short-term control of tyrosine hydroxylase.
    Carlsson A; Kehr W; Lindqvist M
    Adv Biochem Psychopharmacol; 1974; 12(0):135-42. PubMed ID: 4154020
    [No Abstract]   [Full Text] [Related]  

  • 19. Dopamine synthesis by non-dopaminergic neurons expressing individual complementary enzymes of the dopamine synthetic pathway in the arcuate nucleus of fetal rats.
    Ugrumov MV; Melnikova VI; Lavrentyeva AV; Kudrin VS; Rayevsky KS
    Neuroscience; 2004; 124(3):629-35. PubMed ID: 14980733
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neuropsychopharmacology of monoamines and their regulatory enzymes.
    Lipton MA
    Adv Biochem Psychopharmacol; 1974; 12(0):443-54. PubMed ID: 4153941
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.