These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 4154272)
1. Action of thiamine on protein and nucleic acid metabolism, III. Transketolase activity of Lactobacillus viridescens during thiamine starvation. Böhm M; Hess B; Averkamp KH; Kersten W Hoppe Seylers Z Physiol Chem; 1973 Apr; 354(4):453-61. PubMed ID: 4154272 [No Abstract] [Full Text] [Related]
2. Metabolism of ribosomes during thiamine starvation and restoration in Lactobacillus viridescens. Loh W; Farnbacher M; Bohne L; Emmerich B; Kersten H Biochim Biophys Acta; 1974 Jun; 353(2):238-47. PubMed ID: 4842019 [No Abstract] [Full Text] [Related]
3. Action of thiamine on protein and nucleic acid metabolism. I. Synthesis of ribosomes and messenger RNA during recovery from thiamine starvation in Lactobacillus viridescens. Kersten H; Averkamp KH; Braatz W; Greif P; Kersten W; Hess B Hoppe Seylers Z Physiol Chem; 1969 Dec; 350(12):1619-34. PubMed ID: 5363658 [No Abstract] [Full Text] [Related]
4. [Metabolism of transketolase coenzyme in the rat liver]. Gorbach ZV; Kubyshin VL; Maglysh SS; Zabrodskaia SV Biokhimiia; 1986 Jul; 51(7):1093-9. PubMed ID: 3730445 [TBL] [Abstract][Full Text] [Related]
5. Regulation of hepatic transketolase activity by thiamin. Bamji MS Indian J Biochem Biophys; 1973 Dec; 10(4):290-1. PubMed ID: 4134951 [No Abstract] [Full Text] [Related]
6. Studies on the regulation of one-carbon metabolism. The effects of folate concentration in the growth medium on the activity of three folate-dependent enzymes in Lactobacillus casei. Ohara O; Silber R J Biol Chem; 1969 Apr; 244(8):1988-93. PubMed ID: 5253268 [No Abstract] [Full Text] [Related]
7. [Alternative pathways of substrate transformation in reactions catalyzed by thiamine enzymes]. Usmanov RA; Kochetov GA Vestn Akad Med Nauk SSSR; 1986; (8):52-9. PubMed ID: 3020826 [No Abstract] [Full Text] [Related]
8. [On the relationship between thiamine uptake and the content of thiamine, thiamine pyrophosphate and the transketolase activity in rat organs]. Wildemann L; Böhm M; Pabst W; Hess B Enzymol Biol Clin (Basel); 1969; 10(2):81-112. PubMed ID: 5305321 [No Abstract] [Full Text] [Related]
9. [Effect of vitamins PP and B1 on pentosephosphate pathway enzymatic activity in the kidneys of adrenalectomized rats]. Strumilo SA; Vinogradov VV Vopr Pitan; 1978; (3):58-60. PubMed ID: 149433 [TBL] [Abstract][Full Text] [Related]
10. Effect of ethanol administration on thiamine metabolism and transketolase activity in rats. Abe T; Itokawa Y Int J Vitam Nutr Res; 1977; 47(4):307-14. PubMed ID: 591201 [TBL] [Abstract][Full Text] [Related]
11. High-resolution structures of Lactobacillus salivarius transketolase in the presence and absence of thiamine pyrophosphate. Lukacik P; Lobley CM; Bumann M; Arena de Souza V; Owens RJ; O'Toole PW; Walsh MA Acta Crystallogr F Struct Biol Commun; 2015 Oct; 71(Pt 10):1327-34. PubMed ID: 26457526 [TBL] [Abstract][Full Text] [Related]
13. Paraquat and menadione exposure of rainbow trout (Oncorhynchus mykiss)--studies of effects on the pentose-phosphate shunt and thiamine levels in liver and kidney. Akerman G; Amcoff P; Tjärnlund U; Fogelberg K; Torrissen O; Balk L Chem Biol Interact; 2003 Jan; 142(3):269-83. PubMed ID: 12453665 [TBL] [Abstract][Full Text] [Related]
14. Effects of calcium and magnesium deficiency on thiamine distribution in rat brain and liver. Kimura M; Itokawa Y J Neurochem; 1977 Feb; 28(2):389-93. PubMed ID: 839219 [No Abstract] [Full Text] [Related]
15. Overexpression of plastid transketolase in tobacco results in a thiamine auxotrophic phenotype. Khozaei M; Fisk S; Lawson T; Gibon Y; Sulpice R; Stitt M; Lefebvre SC; Raines CA Plant Cell; 2015 Feb; 27(2):432-47. PubMed ID: 25670766 [TBL] [Abstract][Full Text] [Related]
16. Inhibition of thiamine pyrophosphate utilization by thiamine or its monophosphate in Escherichia coli. Nakayama H; Hayashi R J Bacteriol; 1974 Apr; 118(1):32-40. PubMed ID: 4595201 [TBL] [Abstract][Full Text] [Related]
17. Transketolase kinetics. The slow reconstitution of the holoenzyme is due to rate-limiting dimerization of the subunits. Egan RM; Sable HZ J Biol Chem; 1981 May; 256(10):4877-83. PubMed ID: 7014563 [No Abstract] [Full Text] [Related]
18. The pentose cycle. Control and essential function in HeLa cell nucleic acid synthesis. Reitzer LJ; Wice BM; Kennell D J Biol Chem; 1980 Jun; 255(12):5616-26. PubMed ID: 6445904 [No Abstract] [Full Text] [Related]
19. The role of the charge transfer complex in the transketolase catalyzed reaction. Kochetov GA; Usmanov RA; Mevkh AT Biochem Biophys Res Commun; 1973 Oct; 54(4):1619-26. PubMed ID: 4754730 [No Abstract] [Full Text] [Related]
20. The thiamine-dependent hysteretic behavior of human transketolase: implications for thiamine deficiency. Singleton CK; Pekovich SR; McCool BA; Martin PR J Nutr; 1995 Feb; 125(2):189-94. PubMed ID: 7861245 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]