These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 4154781)
21. Conversion of carbon 4 of malate into products of the pentose cycle by isolated bundle sheath strands of Digitaria sanguinalis (L.) Scop. leaves. Dittrich P; Salin ML; Black CC Biochem Biophys Res Commun; 1973 Nov; 55(1):104-10. PubMed ID: 4150779 [No Abstract] [Full Text] [Related]
22. Regulation of NADP-malate dehydrogenase in C4 plants: effect of varying NADPH to NADP ratios and thioredoxin redox state on enzyme activity in reconstituted systems. Rebeille F; Hatch MD Arch Biochem Biophys; 1986 Aug; 249(1):164-70. PubMed ID: 3740849 [TBL] [Abstract][Full Text] [Related]
23. Synthesis of L-malate-4- 14 C and determination of label in the C-4 carboxyl of L-malate. Hatch MD Anal Biochem; 1972 May; 47(1):174-83. PubMed ID: 5031109 [No Abstract] [Full Text] [Related]
24. Unidirectional inhibition and activation of "malic' enzyme of Solanum tuberosum by meso-tartrate. Do Nascimento KH; Davies DD; Patil KD Biochem J; 1975 Aug; 149(2):349-55. PubMed ID: 241334 [TBL] [Abstract][Full Text] [Related]
25. Transient kinetic studies of malic enzyme. A conformational change associated with substrate inhibition by malate. Reynolds CH; Hsu RY; Matthews B; Pry TA; Dalziel K Arch Biochem Biophys; 1978 Aug; 189(2):309-16. PubMed ID: 30406 [No Abstract] [Full Text] [Related]
26. Enzyme regulation in C4 photosynthesis: mechanism of activation of NADP-malate dehydrogenase by reduced thioredoxin. Jacquot JP; Gadal P; Nishizawa AN; Yee BC; Crawford NA; Buchanan BB Arch Biochem Biophys; 1984 Jan; 228(1):170-8. PubMed ID: 6696429 [TBL] [Abstract][Full Text] [Related]
27. Heterogeneity of maize NAD-malate dehydrogenase: generation of multiple forms by incubation at pH 5.0. Curry RA; Ting IP Arch Biochem Biophys; 1975 Apr; 167(2):774-6. PubMed ID: 235904 [No Abstract] [Full Text] [Related]
28. Electrophoretic migration and redox behavior of malate dehydrogenases from cell suspension cultures of tobacco. De Jong DW; Olson AC Biochim Biophys Acta; 1972 Jul; 276(1):53-62. PubMed ID: 4403066 [No Abstract] [Full Text] [Related]
29. A cytokinin oxidase in Zea mays. Whitty CD; Hall RH Can J Biochem; 1974 Sep; 52(9):789-99. PubMed ID: 4214594 [No Abstract] [Full Text] [Related]
30. Nitrate reductase from Chlorella fusca. Reversible inactivation by thiols and by sulfite. Gómez-Moreno C; Palacián E Arch Biochem Biophys; 1974 Jan; 160(1):269-73. PubMed ID: 4151325 [No Abstract] [Full Text] [Related]
35. [On the participation of peroxidase in the redox conversion of NADP-H2]. Rubin BA; Voronkov LA; Kapustina GI Biokhimiia; 1968; 33(1):121-5. PubMed ID: 4385961 [No Abstract] [Full Text] [Related]
36. CO2 is the inorganic carbon substrate of NADP malic enzymes from Zea mays and from wheat germ. Häusler RE; Holtum JA; Latzko E Eur J Biochem; 1987 Mar; 163(3):619-26. PubMed ID: 3104039 [TBL] [Abstract][Full Text] [Related]
37. CO2 fixation by malic enzyme in a species of Micrococcus. Matula TI; McDonald IJ; Martin SM Biochem Biophys Res Commun; 1969 Mar; 34(6):795-802. PubMed ID: 4388574 [No Abstract] [Full Text] [Related]
38. Protection of the active site of mitochondrial malate dehydrogenase from inhibition by potassium tetrachloroplatinate. Friedman ME; Otwell HB; Teggins JE Biochim Biophys Acta; 1975 May; 391(1):1-8. PubMed ID: 166679 [TBL] [Abstract][Full Text] [Related]
39. Physiological role of malic enzymes in the liver. Wada F; Maruyama E; Shibayama K; Sakamoto Y J Biochem; 1968 Jun; 63(6):805-7. PubMed ID: 4387150 [No Abstract] [Full Text] [Related]
40. NADP-malate dehydrogenase: photoactivation in leaves of plants with Calvin cycle photosynthesis. Johnson HS Biochem Biophys Res Commun; 1971 May; 43(4):703-9. PubMed ID: 4397919 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]