BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 4155073)

  • 1. Heterogeneity of membrane vesicles from Escherichia coli and their subfractionation with antibody to ATPase.
    Hare JF; Olden K; Kennedy EP
    Proc Natl Acad Sci U S A; 1974 Dec; 71(12):4843-6. PubMed ID: 4155073
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional mosaicism of membrane proteins in vesicles of Escherichia coli.
    Adler LW; Rosen BP
    J Bacteriol; 1977 Feb; 129(2):959-66. PubMed ID: 190212
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fractionation of membrane vesicles from coliphage M13-infected Escherichia coli.
    Wickner W
    J Bacteriol; 1976 Jul; 127(1):162-7. PubMed ID: 132427
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cytoplasmic membrane vesicles of Escherichia coli. A simple method for preparing the cytoplasmic and outer membranes.
    Yamato I; Anraku Y; Hirosawa K
    J Biochem; 1975 Apr; 77(4):705-18. PubMed ID: 125274
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular structure of membrane vesicles from Escherichia coli.
    Owen P; Kaback HR
    Proc Natl Acad Sci U S A; 1978 Jul; 75(7):3148-52. PubMed ID: 150599
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energy-linked and energy-independent transhydrogenase activities in Escherichia coli vesicles.
    Houghton RL; Fisher RJ; Sanadi DR
    Biochim Biophys Acta; 1975 Jul; 396(1):17-23. PubMed ID: 167848
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Immunochemical analysis of membrane vesicles from Escherichia coli.
    Owen P; Kaback HR
    Biochemistry; 1979 Apr; 18(8):1413-22. PubMed ID: 218620
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reconstitution of energy-dependent transhydrogenase in ATPase-negative mutants of Escherichia coli.
    Bragg PD; Hou C
    Biochem Biophys Res Commun; 1973 Feb; 50(3):729-36. PubMed ID: 4265977
    [No Abstract]   [Full Text] [Related]  

  • 9. [Effect on the orientation of the membrane vesicles of Escherichia coli of various methods of cell disintegration].
    Mikhaleva NI; Gulevskaia SA; Nesmeianova MA; Suzina NE; Fikhte BA
    Mikrobiologiia; 1984; 53(3):432-6. PubMed ID: 6235432
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NADH oxidase activity of HeLa plasma membranes inhibited by the antitumor sulfonylurea N-(4-methylphenylsulfonyl)-N'-(4-chlorophenyl) urea (LY181984) at an external site.
    Morré DJ
    Biochim Biophys Acta; 1995 Dec; 1240(2):201-8. PubMed ID: 8541291
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Membrane vesicles prepared by different procedures from Escherichia coli: orientation of membrane vesicles and coupling of energy to transport into membrane vesicles (author's transl)].
    Futai M
    Tanpakushitsu Kakusan Koso; 1975 Oct; 20(12):1111-22. PubMed ID: 172977
    [No Abstract]   [Full Text] [Related]  

  • 12. Antigenic architecture of membrane vesicles from Escherichia coli.
    Owen P; Kaback HR
    Biochemistry; 1979 Apr; 18(8):1422-6. PubMed ID: 218621
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Active transport of calcium in inverted membrane vesicles of Escherichia coli.
    Rosen BP; McClees JS
    Proc Natl Acad Sci U S A; 1974 Dec; 71(12):5042-6. PubMed ID: 4373740
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Applications of aqueous two-phase partition to isolation of membranes from plants: a periodic NADH oxidase activity as a marker for right side-out plasma membrane vesicles.
    Morré DJ; Morré DM
    J Chromatogr B Biomed Sci Appl; 2000 Jun; 743(1-2):369-76. PubMed ID: 10942307
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cytochemical localization of plasma membrane enzyme markers during interiorization of tachyzoites of Toxoplasma gondii by macrophages.
    de Carvalho L; de Souza W
    J Protozool; 1989; 36(2):164-70. PubMed ID: 2542539
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel electrophoretic fractionation of Escherichia coli envelopes.
    Joseleau-Petit D; Kepes A
    Biochim Biophys Acta; 1975 Sep; 406(1):36-49. PubMed ID: 1100122
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The ultrastructure and ATPase nature of polar membrane in Campylobacter jejuni.
    Brock FM; Murray RG
    Can J Microbiol; 1988 May; 34(5):594-604. PubMed ID: 2974756
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The location of redox-sensitive groups in the carrier protein of proline at the outer and inner surface of the membrane in Escherichia coli.
    Poolman B; Konings WN; Robillard GT
    Eur J Biochem; 1983 Sep; 135(1):41-6. PubMed ID: 6349997
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ubiquinone-mediated coupling of NADH dehydrogenase to active transport in membrane vesicles from Escherichia coli.
    Stroobant P; Kaback HR
    Proc Natl Acad Sci U S A; 1975 Oct; 72(10):3970-4. PubMed ID: 672
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The F1F0-ATPase of Escherichia coli. Substitution of proline by leucine at position 64 in the c-subunit causes loss of oxidative phosphorylation.
    Fimmel AL; Jans DA; Langman L; James LB; Ash GR; Downie JA; Senior AE; Gibson F; Cox GB
    Biochem J; 1983 Aug; 213(2):451-8. PubMed ID: 6193778
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.