These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 4155078)

  • 1. Indirect evidence for superoxide anion and singlet oxygen generated by NADPH--NADPH-dependent cytochrome c reductase and by L-alpha-hydroxyacid--L-amino acid oxidase at high pH.
    Nakano M; Noguchi T; Tsutsumi Y; Sugioka K; Shimizu Y
    Proc Soc Exp Biol Med; 1974 Oct; 147(1):140-3. PubMed ID: 4155078
    [No Abstract]   [Full Text] [Related]  

  • 2. Production of superoxide radicals and hydrogen peroxide by NADH-ubiquinone reductase and ubiquinol-cytochrome c reductase from beef-heart mitochondria.
    Cadenas E; Boveris A; Ragan CI; Stoppani AO
    Arch Biochem Biophys; 1977 Apr; 180(2):248-57. PubMed ID: 195520
    [No Abstract]   [Full Text] [Related]  

  • 3. Studies on the NADPH oxidase reaction of NADPH-cytochrome C reductase. I. The role of superoxide anion.
    Prough RA; Masters BS
    Ann N Y Acad Sci; 1973; 212():89-93. PubMed ID: 4532482
    [No Abstract]   [Full Text] [Related]  

  • 4. Comparison of the effects of superoxide dismutase and cytochrome c on luminol chemiluminescence produced by xanthine oxidase-catalyzed reactions.
    Radi RA; Rubbo H; Prodanov E
    Biochim Biophys Acta; 1989 Jan; 994(1):89-93. PubMed ID: 2535790
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the mechanism of hydroxylation reactions catalyzed by cytochrome P-450.
    Coon MJ; Strobel HW; Boyer RF
    Drug Metab Dispos; 1973; 1(1):92-7. PubMed ID: 4149427
    [No Abstract]   [Full Text] [Related]  

  • 6. The mechanism of liver microsomal lipid peroxidation.
    Pederson TC; Aust SD
    Biochim Biophys Acta; 1975 Apr; 385(2):232-41. PubMed ID: 236006
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Redox cycling of resorufin catalyzed by rat liver microsomal NADPH-cytochrome P450 reductase.
    Dutton DR; Reed GA; Parkinson A
    Arch Biochem Biophys; 1989 Feb; 268(2):605-16. PubMed ID: 2464338
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Superoxide dismutase and catalase enhance autoxidation during one-electron reduction of aminochrome by NADPH-cytochrome P-450 reductase.
    Baez S; Linderson Y; Segura-Aguilar J
    Biochem Mol Med; 1995 Feb; 54(1):12-8. PubMed ID: 7551811
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Participation of superoxide, hydrogen peroxide and hydroxyl radicals in NADPH-cytochrome P-450 reductase-catalyzed peroxidation of methyl linolenate.
    Kameda K; Ono T; Imai Y
    Biochim Biophys Acta; 1979 Jan; 572(1):77-82. PubMed ID: 32915
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cytochrome c enhancement of singlet molecular oxygen production by the NADPH-dependent adrenodoxin reductase-adrenodoxin system: the role of singlet oxygen in damaging adrenal mitochondrial membranes.
    Goda K; Chu J; Kimura T; Schaap AP
    Biochem Biophys Res Commun; 1973 Jun; 52(4):1300-6. PubMed ID: 4146221
    [No Abstract]   [Full Text] [Related]  

  • 11. Generation of superoxide anion as a source of hydrogen peroxide in a reconstituted monooxygenase system.
    Kuthan H; Tsuji H; Graf H; Ullrich V
    FEBS Lett; 1978 Jul; 91(2):343-5. PubMed ID: 210047
    [No Abstract]   [Full Text] [Related]  

  • 12. Formate oxidation as a measure of hydrogen peroxide production: effect of pH and involvement of superoxide anion.
    DeChatelet LR; Shirley PS
    J Immunol; 1981 Aug; 127(2):742-5. PubMed ID: 6265556
    [No Abstract]   [Full Text] [Related]  

  • 13. A possible mechanism of the generation of singlet molecular oxygen in nadph-dependent microsomal lipid peroxidation.
    Sugioka K; Nakano M
    Biochim Biophys Acta; 1976 Feb; 423(2):203-16. PubMed ID: 2317
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NADPH-dependen lipid peroxidation catalyzed by purified NADPH-cytochrome C reductase from rat liver microsomes.
    Pederson TC; Aust SD
    Biochem Biophys Res Commun; 1972 Aug; 48(4):789-95. PubMed ID: 4404623
    [No Abstract]   [Full Text] [Related]  

  • 15. Interactions of some acceptors with superoxide anion radicals formed by the NADPH-specific flavoprotein in rat liver microsomal fractions.
    Mishin V; Pokrovsky A; Lyakhovich VV
    Biochem J; 1976 Feb; 154(2):307-10. PubMed ID: 7236
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nitric oxide synthase-catalyzed activation of oxygen and reduction of cytochromes: reaction mechanisms and possible physiological implications.
    Mayer B; Heinzel B; Klatt P; John M; Schmidt K; Böhme E
    J Cardiovasc Pharmacol; 1992; 20 Suppl 12():S54-6. PubMed ID: 1282986
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of iron chelates in hydroxyl radical production by rat liver microsomes, NADPH-cytochrome P-450 reductase and xanthine oxidase.
    Winston GW; Feierman DE; Cederbaum AI
    Arch Biochem Biophys; 1984 Jul; 232(1):378-90. PubMed ID: 6331321
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitroreduction of 5-nitrofuran derivatives by rat liver xanthine oxidase and reduced nicotinamide adenine dinucleotide phosphate-cytochrome c reductase.
    Wang CY; Behrens BC; Ichikawa M; Bryan GT
    Biochem Pharmacol; 1974 Dec; 23(24):3395-404. PubMed ID: 4155308
    [No Abstract]   [Full Text] [Related]  

  • 19. Function of peroxidase and NADPH cytochrome C reductase during the Wolff-Chaikoff effect.
    Yamamoto K; DeGroot LJ
    Endocrinology; 1973 Oct; 93(4):822-8. PubMed ID: 4147000
    [No Abstract]   [Full Text] [Related]  

  • 20. The role of superoxide and singlet oxygen in lipid peroxidation promoted by xanthine oxidase.
    Pederson TC; Aust SD
    Biochem Biophys Res Commun; 1973 Jun; 52(3):1071-8. PubMed ID: 4351045
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.