BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 4156494)

  • 1. [Role of NADH in the endogeneous metabolism of types Pseudomonas fluorescens].
    Behr P; Meyer E; Wurtz B
    C R Seances Soc Biol Fil; 1974; 168(6-7):843-7. PubMed ID: 4156494
    [No Abstract]   [Full Text] [Related]  

  • 2. [Mechanism of oxidations in Pseudomonas fluorescens. VII. Oxidation of NADH by nonproliferating S type suspensions].
    Supavej S; Behr P; Meyer E; Wurtz B
    C R Seances Soc Biol Fil; 1972; 166(8):1133-8. PubMed ID: 4349703
    [No Abstract]   [Full Text] [Related]  

  • 3. [The endogenous metabolism of Pseudomonas fluorescens in relation to the oxidation of ethanol, serine, and pyruvate].
    Behr P; Meyer E; Wurtz B
    C R Seances Soc Biol Fil; 1976; 170(5):1003-8. PubMed ID: 192421
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bacterial attack on phenolic ethers. Dealkylation of higher ethers and further observations on O-demethylases.
    Cartwright NJ; Holdom KS; Broadbent DA
    Microbios; 1971 Mar; 3(10):113-30. PubMed ID: 4147485
    [No Abstract]   [Full Text] [Related]  

  • 5. [Effect of NADH and several Krebs cycle substrates on the endogenous metabolism of Pseudomonas fluorescens (type S)].
    Behr P; Meyer E; Wurtz B
    C R Seances Soc Biol Fil; 1977; 171(4):954-8. PubMed ID: 201351
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Oxidation of reduced nicotinamide-adeninedinucleotide in Pseudomonas aeruginosa adaptation to hexane].
    Samoĭlov PM; Erofeeva ZS; Shurukhin IuV; Minkevich IG; Antonovskiĭ VL
    Mikrobiologiia; 1973; 42(2):396-402. PubMed ID: 4151421
    [No Abstract]   [Full Text] [Related]  

  • 7. [Mechanism of glucose oxidation by a strain of Pseudomonas fluorescens (type R). I. Measure of glucose-dehydrogenase activity in intact cells].
    Wurtz B
    C R Seances Soc Biol Fil; 1973; 167(3):527-31. PubMed ID: 4150411
    [No Abstract]   [Full Text] [Related]  

  • 8. Metabolic networks to combat oxidative stress in Pseudomonas fluorescens.
    Mailloux RJ; Lemire J; Appanna VD
    Antonie Van Leeuwenhoek; 2011 Mar; 99(3):433-42. PubMed ID: 21153706
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Nitrite reduction by NADH, catalyzed by the nitrite reductase of Pseudomonas aeruginosa].
    Bessières P; Henry Y
    C R Seances Acad Sci D; 1980 Jun; 290(20):1309-12. PubMed ID: 6249512
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reversible, electrochemical interconversion of NADH and NAD+ by the catalytic (Ilambda) subcomplex of mitochondrial NADH:ubiquinone oxidoreductase (complex I).
    Zu Y; Shannon RJ; Hirst J
    J Am Chem Soc; 2003 May; 125(20):6020-1. PubMed ID: 12785808
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the role of Brønsted catalysis in Pseudomonas fluorescens mannitol 2-dehydrogenase.
    Klimacek M; Kavanagh KL; Wilson DK; Nidetzky B
    Biochem J; 2003 Oct; 375(Pt 1):141-9. PubMed ID: 12826012
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetic study of the catalytic mechanism of mannitol dehydrogenase from Pseudomonas fluorescens.
    Slatner M; Nidetzky B; Kulbe KD
    Biochemistry; 1999 Aug; 38(32):10489-98. PubMed ID: 10441145
    [TBL] [Abstract][Full Text] [Related]  

  • 13. p-Hydroxybenzoate hydroxylase from Pseudomonas fluorescens. Reactivity with oxygen.
    Spector T; Massey V
    J Biol Chem; 1972 Nov; 247(22):7123-7. PubMed ID: 4404745
    [No Abstract]   [Full Text] [Related]  

  • 14. [Mechanism of glucose oxydation by a strain of Pseudomonas fluorescens (type R). II. Influence of Fe3+ ions on glucose dehydrogenase activity].
    Wurtz B
    C R Seances Soc Biol Fil; 1973; 167(12):1960-64. PubMed ID: 4213924
    [No Abstract]   [Full Text] [Related]  

  • 15. Oxidation of exogenous NADH by corn mitochondria.
    Ramakrishnan CV; Hanson JB
    Indian J Biochem Biophys; 1974 Jun; 11(2):134-7. PubMed ID: 4155697
    [No Abstract]   [Full Text] [Related]  

  • 16. Relationship between the nitrate and oxygen respiratory systems in membrane vesicles of Escherichia coli K-12. Effect of 2-N-heptyl-4-hydroxyquinoline-N-oxide and ultraviolet light.
    Sánchez Crispín JA; Dubourdieu M; Chippaux M; Puig J
    Acta Cient Venez; 1983; 34(5-6):329-35. PubMed ID: 6399969
    [No Abstract]   [Full Text] [Related]  

  • 17. Oxidation of carbon monoxide and methane by Pseudomonas methanica.
    Ferenci T; Strom T; Quayle JR
    J Gen Microbiol; 1975 Nov; 91(1):79-91. PubMed ID: 467
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The origin of the sodium-dependent NADH oxidation by the respiratory chain of Klebsiella pneumoniae.
    Bertsova YV; Bogachev AV
    FEBS Lett; 2004 Apr; 563(1-3):207-12. PubMed ID: 15063750
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitochondrial malate dehydrogenase, decarboxylating ("malic" enzyme) and transhydrogenase activities of adult Hymenolepis microstoma (Cestoda).
    Fioravanti CF
    J Parasitol; 1982 Apr; 68(2):213-20. PubMed ID: 7077455
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Blue light-sensitive plasma membrane bound exogenous NADH oxidase in Cuscuta reflexa.
    Masih N; Misra PC
    Indian J Exp Biol; 2000 Aug; 38(8):807-13. PubMed ID: 12557914
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.