These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 4156494)

  • 1. [Role of NADH in the endogeneous metabolism of types Pseudomonas fluorescens].
    Behr P; Meyer E; Wurtz B
    C R Seances Soc Biol Fil; 1974; 168(6-7):843-7. PubMed ID: 4156494
    [No Abstract]   [Full Text] [Related]  

  • 2. [Mechanism of oxidations in Pseudomonas fluorescens. VII. Oxidation of NADH by nonproliferating S type suspensions].
    Supavej S; Behr P; Meyer E; Wurtz B
    C R Seances Soc Biol Fil; 1972; 166(8):1133-8. PubMed ID: 4349703
    [No Abstract]   [Full Text] [Related]  

  • 3. [The endogenous metabolism of Pseudomonas fluorescens in relation to the oxidation of ethanol, serine, and pyruvate].
    Behr P; Meyer E; Wurtz B
    C R Seances Soc Biol Fil; 1976; 170(5):1003-8. PubMed ID: 192421
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bacterial attack on phenolic ethers. Dealkylation of higher ethers and further observations on O-demethylases.
    Cartwright NJ; Holdom KS; Broadbent DA
    Microbios; 1971 Mar; 3(10):113-30. PubMed ID: 4147485
    [No Abstract]   [Full Text] [Related]  

  • 5. [Effect of NADH and several Krebs cycle substrates on the endogenous metabolism of Pseudomonas fluorescens (type S)].
    Behr P; Meyer E; Wurtz B
    C R Seances Soc Biol Fil; 1977; 171(4):954-8. PubMed ID: 201351
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Oxidation of reduced nicotinamide-adeninedinucleotide in Pseudomonas aeruginosa adaptation to hexane].
    Samoĭlov PM; Erofeeva ZS; Shurukhin IuV; Minkevich IG; Antonovskiĭ VL
    Mikrobiologiia; 1973; 42(2):396-402. PubMed ID: 4151421
    [No Abstract]   [Full Text] [Related]  

  • 7. [Mechanism of glucose oxidation by a strain of Pseudomonas fluorescens (type R). I. Measure of glucose-dehydrogenase activity in intact cells].
    Wurtz B
    C R Seances Soc Biol Fil; 1973; 167(3):527-31. PubMed ID: 4150411
    [No Abstract]   [Full Text] [Related]  

  • 8. Metabolic networks to combat oxidative stress in Pseudomonas fluorescens.
    Mailloux RJ; Lemire J; Appanna VD
    Antonie Van Leeuwenhoek; 2011 Mar; 99(3):433-42. PubMed ID: 21153706
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Nitrite reduction by NADH, catalyzed by the nitrite reductase of Pseudomonas aeruginosa].
    Bessières P; Henry Y
    C R Seances Acad Sci D; 1980 Jun; 290(20):1309-12. PubMed ID: 6249512
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reversible, electrochemical interconversion of NADH and NAD+ by the catalytic (Ilambda) subcomplex of mitochondrial NADH:ubiquinone oxidoreductase (complex I).
    Zu Y; Shannon RJ; Hirst J
    J Am Chem Soc; 2003 May; 125(20):6020-1. PubMed ID: 12785808
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the role of Brønsted catalysis in Pseudomonas fluorescens mannitol 2-dehydrogenase.
    Klimacek M; Kavanagh KL; Wilson DK; Nidetzky B
    Biochem J; 2003 Oct; 375(Pt 1):141-9. PubMed ID: 12826012
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetic study of the catalytic mechanism of mannitol dehydrogenase from Pseudomonas fluorescens.
    Slatner M; Nidetzky B; Kulbe KD
    Biochemistry; 1999 Aug; 38(32):10489-98. PubMed ID: 10441145
    [TBL] [Abstract][Full Text] [Related]  

  • 13. p-Hydroxybenzoate hydroxylase from Pseudomonas fluorescens. Reactivity with oxygen.
    Spector T; Massey V
    J Biol Chem; 1972 Nov; 247(22):7123-7. PubMed ID: 4404745
    [No Abstract]   [Full Text] [Related]  

  • 14. [Mechanism of glucose oxydation by a strain of Pseudomonas fluorescens (type R). II. Influence of Fe3+ ions on glucose dehydrogenase activity].
    Wurtz B
    C R Seances Soc Biol Fil; 1973; 167(12):1960-64. PubMed ID: 4213924
    [No Abstract]   [Full Text] [Related]  

  • 15. Oxidation of exogenous NADH by corn mitochondria.
    Ramakrishnan CV; Hanson JB
    Indian J Biochem Biophys; 1974 Jun; 11(2):134-7. PubMed ID: 4155697
    [No Abstract]   [Full Text] [Related]  

  • 16. Relationship between the nitrate and oxygen respiratory systems in membrane vesicles of Escherichia coli K-12. Effect of 2-N-heptyl-4-hydroxyquinoline-N-oxide and ultraviolet light.
    Sánchez Crispín JA; Dubourdieu M; Chippaux M; Puig J
    Acta Cient Venez; 1983; 34(5-6):329-35. PubMed ID: 6399969
    [No Abstract]   [Full Text] [Related]  

  • 17. Oxidation of carbon monoxide and methane by Pseudomonas methanica.
    Ferenci T; Strom T; Quayle JR
    J Gen Microbiol; 1975 Nov; 91(1):79-91. PubMed ID: 467
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The origin of the sodium-dependent NADH oxidation by the respiratory chain of Klebsiella pneumoniae.
    Bertsova YV; Bogachev AV
    FEBS Lett; 2004 Apr; 563(1-3):207-12. PubMed ID: 15063750
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitochondrial malate dehydrogenase, decarboxylating ("malic" enzyme) and transhydrogenase activities of adult Hymenolepis microstoma (Cestoda).
    Fioravanti CF
    J Parasitol; 1982 Apr; 68(2):213-20. PubMed ID: 7077455
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Blue light-sensitive plasma membrane bound exogenous NADH oxidase in Cuscuta reflexa.
    Masih N; Misra PC
    Indian J Exp Biol; 2000 Aug; 38(8):807-13. PubMed ID: 12557914
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.