These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 4156496)

  • 1. Conversion of type III pneumococcal polysaccharide low responders to high responders by immunization with a thymus-dependent form of antigen.
    Braley-Mullen H; Sharp GC
    Cell Immunol; 1974 Apr; 12(1):49-60. PubMed ID: 4156496
    [No Abstract]   [Full Text] [Related]  

  • 2. Regulatory role of T cells in IgG antibody formation and immune memory to type III Pneumococcal polysaccharide.
    Braley-Mullen H
    J Immunol; 1974 Dec; 113(6):1909-20. PubMed ID: 4154347
    [No Abstract]   [Full Text] [Related]  

  • 3. Regulation of the antibody response to type 3 pneumococcal polysaccharide. IV. Role of suppressor T cells in the development of low-dose paralysis.
    Baker PJ; Stashak PW; Amsbaugh DF; Prescott B
    J Immunol; 1974 Jun; 112(6):2020-7. PubMed ID: 4151107
    [No Abstract]   [Full Text] [Related]  

  • 4. The use of allogeneic T lymphocytes and bacterial lipopolysaccharide to induce immune responses to monovalent haptens in vitro.
    Trenkner E
    J Immunol; 1974 Sep; 113(3):918-24. PubMed ID: 4153527
    [No Abstract]   [Full Text] [Related]  

  • 5. Regulation of the antibody response to type 3 pneumococcal polysaccharide. 3. Role of regulatory T cells in the development of an IgG and IgA antibody response.
    Barthold DR; Prescott B; Stashak PW; Amsbaugh DF; Baker PJ
    J Immunol; 1974 Mar; 112(3):1042-50. PubMed ID: 4149561
    [No Abstract]   [Full Text] [Related]  

  • 6. Immunological paralysis of mice with pneumococcal polysaccharide antigens.
    Halliday WJ
    Bacteriol Rev; 1971 Sep; 35(3):267-89. PubMed ID: 4398890
    [No Abstract]   [Full Text] [Related]  

  • 7. The response of mice to type III pneumococcal polysaccharide: failure to detect thymus-derived suppressor cells.
    Warr GW; Ghaffar A; James K
    Cell Immunol; 1975 Jun; 17(2):366-73. PubMed ID: 236095
    [No Abstract]   [Full Text] [Related]  

  • 8. Studies on immunological paralysis. XI. A comparison of the tolerogenicity in vitro of levan and type 3 pneumococcal polysaccharide.
    Kotlarski I; Courtenay BM; Howard JG
    Eur J Immunol; 1973 Aug; 3(8):496-502. PubMed ID: 4148233
    [No Abstract]   [Full Text] [Related]  

  • 9. Enhancement of the antibody response to type 3 pneumococcal polysaccharide in mice treated with antilymphocyte serum.
    Baker PJ; Barth RF; Stashak PW; Amsbaugh DF
    J Immunol; 1970 May; 104(5):1313-5. PubMed ID: 4392713
    [No Abstract]   [Full Text] [Related]  

  • 10. The effect of antilymphocytic antibody on the humoral immune response in different strains of mice. 3. The response to type 3 pneumococcus polysaccharide.
    Ghaffar A; James K
    Immunology; 1973 Jun; 24(6):1075-85. PubMed ID: 4146227
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Irradiation-resistant primed T cell function.
    Campbell PA; Cooper HR
    Cell Immunol; 1975 May; 17(1):74-82. PubMed ID: 1092478
    [No Abstract]   [Full Text] [Related]  

  • 12. Characterization of the antibody response to type 3 pneumococcal polysaccharide at the cellular level. I. Dose-response studies and the effect of prior immunization on the magnitude of the antibody response.
    Baker PJ; Stashak PW; Amsbaugh DF; Prescott B
    Immunology; 1971 Apr; 20(4):469-80. PubMed ID: 4396488
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of the antibody response to type 3 pneumococcal polysaccharide at the cellular level. II. Studies on the relative rate of antibody synthesis and release by antibody-producing cells.
    Baker PJ; Stashak PW; Amsbaugh DF; Prescott B
    Immunology; 1971 Apr; 20(4):481-92. PubMed ID: 4396489
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studies on accessory cells in the adoptive antibody response to sheep erythrocytes in mice.
    Coppel RL; Mitchell GF
    Cell Immunol; 1975 Aug; 18(2):411-23. PubMed ID: 1095217
    [No Abstract]   [Full Text] [Related]  

  • 15. Decline in suppressor T cell function with age in female NZB mice.
    Barthold DR; Kysela S; Steinberg AD
    J Immunol; 1974 Jan; 112(1):9-16. PubMed ID: 4149592
    [No Abstract]   [Full Text] [Related]  

  • 16. Requirement for lymphocyte-macrophage interaction in the response of mouse spleen cultures to pneumococcal polysaccharide.
    Aaskov JG; Halliday WJ
    Cell Immunol; 1971 Aug; 2(4):335-40. PubMed ID: 4399613
    [No Abstract]   [Full Text] [Related]  

  • 17. Evidence for the existence of two functionally distinct types of cells which regulate the antibody response to type 3 pneumococcal polysaccharide.
    Baker PJ; Stashak PW; Amsbaugh DF; Prescott B; Barth RF
    J Immunol; 1970 Dec; 105(6):1581-3. PubMed ID: 4394909
    [No Abstract]   [Full Text] [Related]  

  • 18. Characteristics of B cell tolerance induced with T-independent polysaccharides.
    Howard JG; Miranda JJ; Zola H; Christie GH
    Adv Exp Med Biol; 1973; 29(0):369-75. PubMed ID: 4152808
    [No Abstract]   [Full Text] [Related]  

  • 19. Induction of primary and inhibition of secondary antibody response to hapten by hapten conjugates of type III pneumococcal polysaccharide.
    Lerman SP; Romano TJ; Mond JJ; Heidelberger M; Thorbecke GJ
    Cell Immunol; 1975 Feb; 15(2):321-35. PubMed ID: 234300
    [No Abstract]   [Full Text] [Related]  

  • 20. Secondary IgG responses to type III pneumococcal polysaccharide. I. Kinetics and antigen requirements.
    Braley-Mullen H
    J Immunol; 1975 Nov; 115(5):1194-8. PubMed ID: 240888
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.