These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 4156759)

  • 21. High-resolution particle size analysis in biotechnology process control.
    Thomas JC; Middelberg AP; Hamel JF; Snoswell MA
    Biotechnol Prog; 1991; 7(4):377-9. PubMed ID: 1369330
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The particle size analysis of multiple emulsions [proceedings].
    Davis SS; Purewal TS; Burbage AS
    J Pharm Pharmacol; 1976 Dec; 28 Suppl():60P. PubMed ID: 12338
    [No Abstract]   [Full Text] [Related]  

  • 23. Effects of complex internal structures on rheology of multiple emulsions particles in 2D from a boundary integral method.
    Wang J; Liu J; Han J; Guan J
    Phys Rev Lett; 2013 Feb; 110(6):066001. PubMed ID: 23432277
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Light-scattering method in particle size analysis of parenteral emulsions.
    Tian Y; Li LC
    Drug Dev Ind Pharm; 1998 Mar; 24(3):275-80. PubMed ID: 9876585
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Particle size analysis of some water/oil/water multiple emulsions.
    Ursica L; Tita D; Palici I; Tita B; Vlaia V
    J Pharm Biomed Anal; 2005 Apr; 37(5):931-6. PubMed ID: 15862669
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Design and development of multiple emulsion for enhancement of oral bioavailability of acyclovir.
    Paul S; Kumar A; Yedurkar P; Sawant K
    Drug Dev Ind Pharm; 2013 Nov; 39(11):1809-17. PubMed ID: 23281917
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Particle size reduction of emulsions by formulation design-II: effect of oil and surfactant concentration.
    Chanana GD; Sheth BB
    PDA J Pharm Sci Technol; 1995; 49(2):71-6. PubMed ID: 7780748
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Penetration of sub-micron particles into dentinal tubules using ultrasonic cavitation.
    Vyas N; Sammons RL; Pikramenou Z; Palin WM; Dehghani H; Walmsley AD
    J Dent; 2017 Jan; 56():112-120. PubMed ID: 27884720
    [TBL] [Abstract][Full Text] [Related]  

  • 29. THE EFFECT OF PARTICLE SIZE ON THE ERRORS ASSOCIATED WITH THE OVERLAPPING OF PARTICLES ON THERMAL PRECIPITATOR SAMPLES.
    ASHFORD JR; DODGSON J; HADDEN GG; SKOROBOHATYJ B; FAY JW
    Ann Occup Hyg; 1963 Nov; 6():201-22. PubMed ID: 14082747
    [No Abstract]   [Full Text] [Related]  

  • 30. Preparation of polymer nano- and microspheres by vinyl polymerization techniques.
    Arshady R
    J Microencapsul; 1988; 5(2):101-14. PubMed ID: 3058923
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Centrifugal processing of cell debris and inclusion bodies from recombinant Escherichia coli.
    Wong HH; O'Neill BK; Middelberg AP
    Bioseparation; 1996; 6(6):361-72. PubMed ID: 9352683
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In vitro study to estimate particle release from a centrifugal blood pump.
    Takami Y
    Artif Organs; 2006 May; 30(5):371-6. PubMed ID: 16683955
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Seed particle-enabled acoustic trapping of bacteria and nanoparticles in continuous flow systems.
    Hammarström B; Laurell T; Nilsson J
    Lab Chip; 2012 Nov; 12(21):4296-304. PubMed ID: 22955667
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Investigation of zinc oxide particles in cosmetic products by means of centrifugal and asymmetrical flow field-flow fractionation.
    Sogne V; Meier F; Klein T; Contado C
    J Chromatogr A; 2017 Sep; 1515():196-208. PubMed ID: 28797664
    [TBL] [Abstract][Full Text] [Related]  

  • 35. AN IN VITRO TECHNIQUE FOR REAGGREGATION OF DISSOCIATED TISSUE IN A CENTRIFUGAL FIELD.
    HAYES RL
    Exp Cell Res; 1965 Jan; 37():1-11. PubMed ID: 14263310
    [No Abstract]   [Full Text] [Related]  

  • 36. Room-temperature storage of microalgae in water-in-oil emulsions: influence of solid particle type and concentration in the oil phase.
    Fernández L; Scher H; Jeoh T; VanderGheynst JS
    Bioprocess Biosyst Eng; 2015 Dec; 38(12):2451-60. PubMed ID: 26463181
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Preparation and characterization of oridonin submicron emulsions].
    Yu L; Tong X; Tan Y
    Zhongguo Zhong Yao Za Zhi; 2009 Oct; 34(20):2590-3. PubMed ID: 20069898
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of novel and conventional thermal treatments on the physicochemical properties of iron-loaded double emulsions.
    Hosseini SMH; Hashemi Gahruie H; Razmjooie M; Sepeidnameh M; Rastehmanfard M; Tatar M; Naghibalhossaini F; Van der Meeren P
    Food Chem; 2019 Jan; 270():70-77. PubMed ID: 30174093
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Proceedings: The use of an image analyser to determine the particle size distribution of salbutamol for use in metered dose inhalation aerosols.
    Hallworth GW; Barnes P
    J Pharm Pharmacol; 1974 Dec; 26 Suppl():78P-79P. PubMed ID: 4156760
    [No Abstract]   [Full Text] [Related]  

  • 40. Fabrication of reduced fat products by controlled heteroaggregation of oppositely charged lipid droplets.
    Mao Y; Julian McClements D
    J Food Sci; 2012 May; 77(5):E144-52. PubMed ID: 23163941
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.