BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 41571)

  • 1. Development of a method for the incorporation of substitution-inert metal ions into proteins. Site-specific modification of arsanilazotyrosine-248 carboxypeptidase A with cobalt(III).
    Urdea MS; Legg JI
    Biochemistry; 1979 Oct; 18(22):4984-91. PubMed ID: 41571
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A peptidase-inactive derivative of carboxypeptidase A modified specifically at tyrosine 248. Cobalt(III) (ethylenediamine-N,N'-diacetato) (arsanilazotyrosinato 248 carboxypeptidase A).
    Urdea MS; Legg JI
    J Biol Chem; 1979 Dec; 254(23):11868-74. PubMed ID: 574142
    [No Abstract]   [Full Text] [Related]  

  • 3. Interaction of zinc ions with arsanilazotyrosine-248 carboxypeptidase A.
    Hirose J; Noji M; Kidani Y; Wilkins RG
    Biochemistry; 1985 Jul; 24(14):3495-502. PubMed ID: 4041425
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzymatically inactive, exchange-inert Co(III)-carboxypeptidase A: role of inner sphere coordination in peptide and ester catalysis.
    van Wart HE; Vallee BL
    Biochemistry; 1978 Aug; 17(16):3385-94. PubMed ID: 210789
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conformations of arsanilazotyrosine-248 carboxypeptidase A alpha, beta, gamma, comparison of crystals and solution.
    Johansen JT; Vallee BL
    Proc Natl Acad Sci U S A; 1973 Jul; 70(7):2006-10. PubMed ID: 4516200
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spectral properties of cobalt carboxypeptidase A. Interaction of the metal atom with anions.
    Geoghegan KF; Holmquist B; Spilburg CA; Vallee BL
    Biochemistry; 1983 Apr; 22(8):1847-52. PubMed ID: 6849891
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metal ion effects on target sites of modification in metallocarboxypeptidase B.
    Zisapel N; Blank T; Sokolovsky M
    J Inorg Biochem; 1983 Jun; 18(3):253-62. PubMed ID: 6875538
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Environment and conformation dependent sensitivity of the arsanilazotyrosine-248 carboxypeptidase A chromophore.
    Johansen JT; Vallee BL
    Biochemistry; 1975 Feb; 14(4):649-60. PubMed ID: 234737
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Similarities between the conformation of arsanilazotyrosine 248 of carboxypeptidase A in the crystalline state and in solution.
    Quiocho FA; McMurray CH; Lipscomb WN
    Proc Natl Acad Sci U S A; 1972 Oct; 69(10):2850-4. PubMed ID: 4507609
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of mechanism-based reversible inhibitors on the metal environment of cobalt(II)carboxypeptidase A: an electronic spectral study.
    Martin MT; Holmquist B; Riordan JF
    J Inorg Biochem; 1989 May; 36(1):27-37. PubMed ID: 2746219
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Circular dichroism-inhibitor titrations of arsanilazotyrosine-248 carboxypeptidase A.
    Johansen JT; Klyosov AA; Vallee BL
    Biochemistry; 1976 Jan; 15(2):296-303. PubMed ID: 1247518
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetics of substrate and product interactions with arsanilazotyrosine-248 carboxypeptidase A.
    Harrison LW; Vallee BL
    Biochemistry; 1978 Oct; 17(21):4359-63. PubMed ID: 718842
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cobalt substitution studies on bovine erythrocyte superoxide dismutase: evidence for a novel cobalt-superoxide dismutase derivative.
    Salvato B; Beltramini M; Ricchelli F; Tallandini L
    Biochim Biophys Acta; 1989 Sep; 998(1):14-20. PubMed ID: 2790051
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differences between the conformation of arsanilazotyrosine 248 of carboxypeptidase A in the crystalline state and in solution.
    Johansen JT; Vallee BL
    Proc Natl Acad Sci U S A; 1971 Oct; 68(10):2532-5. PubMed ID: 5289887
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cobalt(III) complexes of bidentate azotyrosine analogs.
    White WI; Legg JI
    Bioinorg Chem; 1976; 6(2):163-77. PubMed ID: 1053538
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Site-specific substituted cobalt(II) horse liver alcohol dehydrogenases. Preparation and characterization in solution, crystalline and immobilized state.
    Maret W; Andersson I; Dietrich H; Schneider-Bernlöhr H; Einarsson R; Zeppezauer M
    Eur J Biochem; 1979 Aug; 98(2):501-12. PubMed ID: 488110
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metal-coordinating substrate analogs as inhibitors of metalloenzymes.
    Holmquist B; Vallee BL
    Proc Natl Acad Sci U S A; 1979 Dec; 76(12):6216-20. PubMed ID: 230502
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exchange-inert metal ions as probes of enzyme structure-function relationships. Cobalt(III), cobalt(II), and zinc(II), azophenol complexes as models for enzyme azotyrosine complexes.
    White WI; Legg JI
    J Am Chem Soc; 1975 Jul; 97(14):3937-41. PubMed ID: 1159207
    [No Abstract]   [Full Text] [Related]  

  • 19. Theoretical analysis of the influence of chelate-ring size and vicinal effects on electronic circular dichroism spectra of cobalt(III) EDDA-type complexes.
    Wang A; Wang Y; Jia J; Feng L; Zhang C; Liu L
    J Phys Chem A; 2013 Jun; 117(24):5061-72. PubMed ID: 23713886
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation and characterization of an active phosphoenolpyruvate carboxykinase-cobalt(III) complex.
    Hlavaty JJ; Nowak T
    Biochemistry; 1997 Mar; 36(11):3389-403. PubMed ID: 9116019
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.