These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

44 related articles for article (PubMed ID: 4157914)

  • 1. [On the determination of galactose consumption in human erythrocytes using galactose oxidase].
    Hjelm M; De Verdier CH
    Folia Haematol Int Mag Klin Morphol Blutforsch; 1965; 83(3):347-9. PubMed ID: 4157914
    [No Abstract]   [Full Text] [Related]  

  • 2. Galactose metabolism of mammalian erythrocytes.
    Paniker NV; Iyer GY
    J Cell Physiol; 1971 Oct; 78(2):251-5. PubMed ID: 5003225
    [No Abstract]   [Full Text] [Related]  

  • 3. The kinetics of selective biological transport. I. Determination of transport constants for sugar movements in human erythrocytes.
    Miller DM
    Biophys J; 1965 Jul; 5(4):407-15. PubMed ID: 5861699
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stable-isotope dilution analysis of galactose metabolites in human erythrocytes.
    Schadewaldt P; Kamalanathan L; Hammen HW; Wendel U
    Rapid Commun Mass Spectrom; 2003; 17(24):2833-8. PubMed ID: 14673834
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The kinetics of selective biological transport. II. Equations for induced uphill transport of sugars in human erythrocytes.
    Miller DM
    Biophys J; 1965 Jul; 5(4):417-23. PubMed ID: 5861700
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Galactose metabolism in the newborn infant.
    Donnell GN; Ng WG; Hodgman JE; Bergren WR
    Pediatrics; 1967 Jun; 39(6):829-37. PubMed ID: 6026549
    [No Abstract]   [Full Text] [Related]  

  • 7. [On the linking effect of monosaccharides and ion transport in erythrocytes].
    Müller F
    Folia Haematol Int Mag Klin Morphol Blutforsch; 1965; 83(2):131-7. PubMed ID: 4157984
    [No Abstract]   [Full Text] [Related]  

  • 8. [Reduction of methemoglobin in young and old human erythrocytes incubated in various media].
    Zachara B; Raszewski W
    Acta Physiol Pol; 1971; 22(1):101-9. PubMed ID: 5576225
    [No Abstract]   [Full Text] [Related]  

  • 9. Galactokinase in human red blood cells. Its dependency on galactose concentration.
    de Verdier CH
    Scand J Clin Lab Invest Suppl; 1966; 18():156-7. PubMed ID: 5958515
    [No Abstract]   [Full Text] [Related]  

  • 10. Enzyme kinetics in mammalian cells. II. Simultaneous determination of rate constants for the first three steps of galactose metabolism in red cells.
    Hill HZ; Puck TT
    J Cell Physiol; 1970 Feb; 75(1):49-56. PubMed ID: 5418108
    [No Abstract]   [Full Text] [Related]  

  • 11. Heterozygous state of galactosemia with clinical signs of the disease?
    Ionăşescu V; Luca N
    J Genet Hum; 1969 May; 17(1):53-64. PubMed ID: 5808540
    [No Abstract]   [Full Text] [Related]  

  • 12. Micro-method for determination of blood galactose by means of glucose oxidase (notatin) and anthrone.
    SONDERGAARD G
    Scand J Clin Lab Invest; 1958; 10(2):203-10. PubMed ID: 13602681
    [No Abstract]   [Full Text] [Related]  

  • 13. First-order clearance of plasma galactose: the effect of liver disease.
    Henderson JM; Kutner MH; Bain RP
    Gastroenterology; 1982 Nov; 83(5):1090-6. PubMed ID: 7117792
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enzyme kinetics in mammalian cells. 3. Regulation of activities of galactokinase, galactose-1-phosphate uridyl transferase and uridine diphosphogalactose-4-epimerase in human erythrocytes.
    Hill HZ
    J Cell Physiol; 1971 Dec; 78(3):419-30. PubMed ID: 4334370
    [No Abstract]   [Full Text] [Related]  

  • 15. [Relationships between monosaccharide transport and Mg-Na-K-ATP-ase in human erythrocytes and ghosts].
    Müller F; Dettmer D; Hartenstein H
    Folia Haematol Int Mag Klin Morphol Blutforsch; 1968; 90(2):259-64. PubMed ID: 4178876
    [No Abstract]   [Full Text] [Related]  

  • 16. A case-control study of galactose consumption and metabolism in relation to ovarian cancer.
    Cramer DW; Greenberg ER; Titus-Ernstoff L; Liberman RF; Welch WR; Li E; Ng WG
    Cancer Epidemiol Biomarkers Prev; 2000 Jan; 9(1):95-101. PubMed ID: 10667469
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GOST, galactose oxidase and sialyl transferase, substrate and receptor sites in erythrocyte senescence.
    Aminoff D; Ghalambor MA; Henrich CJ
    Prog Clin Biol Res; 1981; 56():269-82. PubMed ID: 7330013
    [No Abstract]   [Full Text] [Related]  

  • 18. [Quantitative determination of galactose with galactose oxidase from Dactylium dendroides. II. Measurement of the galactose concentration in serum and urine].
    Fischer W; Zapf J
    Hoppe Seylers Z Physiol Chem; 1964; 339(1):54-63. PubMed ID: 5829237
    [No Abstract]   [Full Text] [Related]  

  • 19. Exchange transport of sugars in erythrocytes of patients suffering from hereditary spherocytosis.
    Bican P
    Folia Haematol Int Mag Klin Morphol Blutforsch; 1968; 90(1):78-81. PubMed ID: 4176392
    [No Abstract]   [Full Text] [Related]  

  • 20. The amperometric determination of glutathione reductase activity in human erythrocytes.
    COLLIER HB; McRAE SC
    Can J Biochem Physiol; 1955 May; 33(3):404-7. PubMed ID: 14364331
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.