BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 4157951)

  • 21. The effects of contraction and ischaemia on creatine phosphate and adenosine triphosphate in M. semitendinosus of the pig.
    McLoughlin JV; Tarrant PJ; Harrington MG
    Proc R Ir Acad B; 1973; 73(7):95-108. PubMed ID: 4796832
    [No Abstract]   [Full Text] [Related]  

  • 22. Muscular contraction.
    Huxley AF
    J Physiol; 1974 Nov; 243(1):1-43. PubMed ID: 4449057
    [No Abstract]   [Full Text] [Related]  

  • 23. The relationship between initial creatine phosphate breakdown and recovery oxygen consumption for a single isometric tetanus of the frog sartorius muscle at 20 degrees C.
    Mahler M
    J Gen Physiol; 1979 Feb; 73(2):159-74. PubMed ID: 312312
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Temporal evolution of phosphocreatine hydrolysis and hexosediphosphate synthesis during and after 5 simple contractions, at 0 degrees C, in the sartorius of Rana temporaria, poisoned with monoiodoacetic acid].
    Spronck AC
    Arch Int Physiol Biochim; 1965 Mar; 73(2):241-59. PubMed ID: 4158088
    [No Abstract]   [Full Text] [Related]  

  • 25. Mechanical relaxation rate and metabolism studied in fatiguing muscle by phosphorus nuclear magnetic resonance.
    Dawson MJ; Gadian DG; Wilkie DR
    J Physiol; 1980 Feb; 299():465-84. PubMed ID: 6966688
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High-energy phosphate metabolism and energy liberation associated with rapid shortening in frog skeletal muscle.
    Homsher E; Irving M; Wallner A
    J Physiol; 1981 Dec; 321():423-36. PubMed ID: 6978398
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The role of the creatine--phosphorylcreatine system in muscle.
    Seraydarian MW; Abbott BC
    J Mol Cell Cardiol; 1976 Oct; 8(10):741-6. PubMed ID: 994191
    [No Abstract]   [Full Text] [Related]  

  • 28. Efficiency of work performance and contraction velocity in isotonic tetani of frog sartorius.
    di Prampero PE; Boutellier U; Marguerat A
    Pflugers Arch; 1988 Oct; 412(5):455-61. PubMed ID: 3194167
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Necessity of newly synthesized ATP by creatine kinase for contraction of permeabilized longitudinal muscle preparations of rat proximal colon.
    Takeuchi T; Fujita A; Ishii T; Nishio H; Hata F
    J Pharmacol Exp Ther; 1995 Oct; 275(1):429-34. PubMed ID: 7562581
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An increase in myocardial phosphorylcreatine during induced cardiac arrest.
    Kako K
    Can J Physiol Pharmacol; 1966 Jul; 44(4):675-8. PubMed ID: 5968214
    [No Abstract]   [Full Text] [Related]  

  • 31. Chemical change and energy production during contraction of frog muscle: how are their time courses related?
    Curtin NA; Woledge RC
    J Physiol; 1979 Mar; 288():353-66. PubMed ID: 313981
    [TBL] [Abstract][Full Text] [Related]  

  • 32. ATP utilization and force during intermittent and continuous muscle contractions.
    Chasiotis D; Bergström M; Hultman E
    J Appl Physiol (1985); 1987 Jul; 63(1):167-74. PubMed ID: 3624122
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Chemistry of muscle contraction. Adenosine triphosphate and phosphorylcreatine as energy supplies for single contractions of working muscle.
    CAIN DF; INFANTE AA; DAVIES RE
    Nature; 1962 Oct; 196():214-7. PubMed ID: 14017735
    [No Abstract]   [Full Text] [Related]  

  • 34. Muscular fatigue investigated by phosphorus nuclear magnetic resonance.
    Dawson MJ; Gadian DG; Wilkie DR
    Nature; 1978 Aug; 274(5674):861-6. PubMed ID: 308189
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Force, shortening, and work in muscular contraction: relative contributions to overall energy utilization.
    Jobsis FF; Duffield JC
    Science; 1967 Jun; 156(3780):1388-92. PubMed ID: 4304595
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Metabolic changes with fatigue in different types of single muscle fibres of Xenopus laevis.
    Nagesser AS; van der Laarse WJ; Elzinga G
    J Physiol; 1992 Mar; 448():511-23. PubMed ID: 1593475
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Pre- and postsynaptic utilization of ATP and creatine phosphate at the nerve-electroplaque junction.
    Chmouliovsky M; Dunant Y; Hojvat S
    J Neurochem; 1974 Jan; 22(1):73-5. PubMed ID: 4818873
    [No Abstract]   [Full Text] [Related]  

  • 38. [Increase in the adenosine triphosphate content in the frog's skeletal muscles under the action of urea].
    Stabrovskaia VI
    Tsitologiia; 1967 May; 9(5):536-41. PubMed ID: 6077293
    [No Abstract]   [Full Text] [Related]  

  • 39. [Influence of different inhibitors of the sarcoplasmic reticulum on potassium contracture and the turnover of energy-rich phosphate compounds in the isolated frog sartorius].
    Janke J; Oberdisse A; Petzoldt C
    Pflugers Arch; 1970; 314(2):124-40. PubMed ID: 5460707
    [No Abstract]   [Full Text] [Related]  

  • 40. Contraction-mediated glycogenolysis in mouse skeletal muscle lacking creatine kinase: the role of phosphorylase b activation.
    Katz A; Andersson DC; Yu J; Norman B; Sandstrom ME; Wieringa B; Westerblad H
    J Physiol; 2003 Dec; 553(Pt 2):523-31. PubMed ID: 12963789
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.