These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
227 related articles for article (PubMed ID: 41588)
1. Distinct effects of three bile salts on cholesterol solubilization by oleate-monoolein-bile salt micelles. Montet JC; Reynier MO; Montet AM; Gerolami A Biochim Biophys Acta; 1979 Nov; 575(2):289-94. PubMed ID: 41588 [TBL] [Abstract][Full Text] [Related]
3. Comparative effects of cholic, chenodeoxycholic, and ursodeoxycholic acids on micellar solubilization and intestinal absorption of cholesterol. Reynier MO; Montet JC; Gerolami A; Marteau C; Crotte C; Montet AM; Mathieu S J Lipid Res; 1981 Mar; 22(3):467-73. PubMed ID: 7240971 [TBL] [Abstract][Full Text] [Related]
4. Enlargement of taurocholate micelles by added cholesterol and monoolein: self-diffusion measurements. Woodford FP J Lipid Res; 1969 Sep; 10(5):539-45. PubMed ID: 5808827 [TBL] [Abstract][Full Text] [Related]
5. Intestinal cholesterol and oleic acid uptake from solutions supersaturated with lipids. Reynier MO; Crotte C; Montet JC; Sauve P; Gerolami A Lipids; 1987 Jan; 22(1):28-32. PubMed ID: 3821399 [TBL] [Abstract][Full Text] [Related]
6. Differences in the release of cholesterol from taurocholate versus taurochenodeoxycholate micellar solutions. Chijiiwa K; Kiyosawa R; Fukudome K; Nakayama F Biochim Biophys Acta; 1988 Sep; 962(2):208-13. PubMed ID: 3167078 [TBL] [Abstract][Full Text] [Related]
7. Cholesterol enhances membrane-damaging properties of model bile by increasing the intervesicular-intermixed micellar concentration of hydrophobic bile salts. Narain PK; DeMaria EJ; Heuman DM J Surg Res; 1999 Jun; 84(1):112-9. PubMed ID: 10334899 [TBL] [Abstract][Full Text] [Related]
8. Use of novel cationic bile salts in cholesterol crystallization and solubilization in vitro. Bhat S; Leikin-Gobbi D; Konikoff FM; Maitra U Biochim Biophys Acta; 2006 Oct; 1760(10):1489-96. PubMed ID: 16919881 [TBL] [Abstract][Full Text] [Related]
9. Dietary fibers: V. Binding of bile salts, phospholipids and cholesterol from mixed micelles by bile acid sequestrants and dietary fibers. Vahouny GV; Tombes R; Cassidy MM; Kritchevsky D; Gallo LL Lipids; 1980 Dec; 15(12):1012-8. PubMed ID: 6261073 [TBL] [Abstract][Full Text] [Related]
10. Oleic acid modulates the partitioning of cholesterol from micellar bile salt solution. Chijiiwa K Lipids; 1987 Feb; 22(2):121-4. PubMed ID: 3561176 [TBL] [Abstract][Full Text] [Related]
11. Intestinal cholesterol uptake from mixed micelles. In vitro effects of taurocholate, taurochenodeoxycholate and tauroursodeoxycholate. Reynier MO; Montet JC; Crotte C; Marteau C; Gerolami A Biochim Biophys Acta; 1981 Jun; 664(3):616-9. PubMed ID: 7272324 [TBL] [Abstract][Full Text] [Related]
12. Impact of Gut Microbiota-Mediated Bile Acid Metabolism on the Solubilization Capacity of Bile Salt Micelles and Drug Solubility. Enright EF; Joyce SA; Gahan CG; Griffin BT Mol Pharm; 2017 Apr; 14(4):1251-1263. PubMed ID: 28186768 [TBL] [Abstract][Full Text] [Related]
13. Optimization and validation of assays to estimate pancreatic esterase activity using well-characterized micellar solutions of cholesteryl oleate and tocopheryl acetate. Mathias PM; Harries JT; Muller DP J Lipid Res; 1981 Jan; 22(1):177-84. PubMed ID: 7217783 [TBL] [Abstract][Full Text] [Related]
14. Adsorption of mixtures of bile salt taurine conjugates to lecithin-cholesterol membranes: implications for bile salt toxicity and cytoprotection. Heuman DM; Bajaj RS; Lin Q J Lipid Res; 1996 Mar; 37(3):562-73. PubMed ID: 8728319 [TBL] [Abstract][Full Text] [Related]
15. Studies on the mechanism of cholesterol uptake and on the effects of bile salts on this uptake by brush-border membranes isolated from rabbit small intestine. Proulx P; Aubry H; Brglez I; Williamson DG Biochim Biophys Acta; 1984 Dec; 778(3):586-93. PubMed ID: 6509054 [TBL] [Abstract][Full Text] [Related]
16. Thermodynamic and molecular basis for dissimilar cholesterol-solubilizing capacities by micellar solutions of bile salts: cases of sodium chenodeoxycholate and sodium ursodeoxycholate and their glycine and taurine conjugates. Carey MC; Montet JC; Phillips MC; Armstrong MJ; Mazer NA Biochemistry; 1981 Jun; 20(12):3637-48. PubMed ID: 7260061 [TBL] [Abstract][Full Text] [Related]
17. Micelle formation of sodium chenodeoxycholate and solubilization into the micelles: comparison with other unconjugated bile salts. Ninomiya R; Matsuoka K; Moroi Y Biochim Biophys Acta; 2003 Nov; 1634(3):116-25. PubMed ID: 14643799 [TBL] [Abstract][Full Text] [Related]
18. Bile salt micelle can sustain more cholesterol in the intermicellar aqueous phase than the maximal aqueous solubility. Chijiiwa K; Nagai M Arch Biochem Biophys; 1989 May; 270(2):472-7. PubMed ID: 2705774 [TBL] [Abstract][Full Text] [Related]
19. Influence of taurocholate, taurochenodeoxycholate, and taurodehydrocholate on sulfobromophthalein transport into bile. Binet S; Delage Y; Erlinger S Am J Physiol; 1979 Jan; 236(1):E10-4. PubMed ID: 434145 [TBL] [Abstract][Full Text] [Related]
20. The hydrophobic-hydrophilic balance of bile salts. Inverse correlation between reverse-phase high performance liquid chromatographic mobilities and micellar cholesterol-solubilizing capacities. Armstrong MJ; Carey MC J Lipid Res; 1982 Jan; 23(1):70-80. PubMed ID: 7057113 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]