These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 4161319)

  • 1. Thalamic spreading depression in the rat.
    Fifková E
    Electroencephalogr Clin Neurophysiol; 1966 Jan; 20(1):68-76. PubMed ID: 4161319
    [No Abstract]   [Full Text] [Related]  

  • 2. [On the interaction of hypothalamus, reticular formation of the mesencephalon and thalamus in the mechanism of selective ascending activation of the cerebral cortex during physiologic hunger].
    Sudakov KV
    Fiziol Zh SSSR Im I M Sechenova; 1965 Apr; 51(4):449-56. PubMed ID: 5884833
    [No Abstract]   [Full Text] [Related]  

  • 3. Hippocampal slow ("arousal") wave activation in the rostral midbrain transected cat.
    Kawamura H; Domino EF
    Electroencephalogr Clin Neurophysiol; 1968 Nov; 25(5):471-80. PubMed ID: 4182601
    [No Abstract]   [Full Text] [Related]  

  • 4. Effects of subthalamic lesions on sensory-evoked potentials in the reticular formation and sensorimotor cortex.
    Lindsley DF; Zaroodny T; Morton TH
    Exp Neurol; 1967 Feb; 17(2):210-20. PubMed ID: 4163587
    [No Abstract]   [Full Text] [Related]  

  • 5. [Role of spino-cervico-thalamic and neospino-thalamic pathways in transmission of somatic messages to the cat's orbital cortex].
    Korn H; Richard P
    Electroencephalogr Clin Neurophysiol; 1968 Jun; 24(6):514-31. PubMed ID: 4172736
    [No Abstract]   [Full Text] [Related]  

  • 6. Excitability of EEG "synchronizing" and "desynchronizing" neurones in the thalamus and the brain-stem of the cat. II. Chronaxies and refractoriness.
    Abeles M
    Electroencephalogr Clin Neurophysiol; 1967 Jul; 23(1):25-34. PubMed ID: 4165557
    [No Abstract]   [Full Text] [Related]  

  • 7. Correlation between EEG changes in the cortex, thalamus, and mesencephalic reticular formation during defensive conditioning in rabbits.
    Efremova TM; Morozov AT; Markin VP
    Neurosci Behav Physiol; 1981; 11(6):550-7. PubMed ID: 7347801
    [No Abstract]   [Full Text] [Related]  

  • 8. Homeostatic mechanisms in the hypothalamus.
    Tachibana S
    Brain Res; 1969 May; 13(3):522-39. PubMed ID: 5772434
    [No Abstract]   [Full Text] [Related]  

  • 9. Inhibition of evoked potentials by caudate stimulation and its antagonism by centrally acting drugs.
    Collins RJ; Simonton VR
    Int J Neuropharmacol; 1967 Sep; 6(5):349-56. PubMed ID: 6055316
    [No Abstract]   [Full Text] [Related]  

  • 10. [Cortical and subcortical components of conditioned reflexes].
    Burev J
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1974; 24(3):479-86. PubMed ID: 4450756
    [No Abstract]   [Full Text] [Related]  

  • 11. Steady potential fields during sleep and wakefulness in the cat.
    Wurtz RH
    Exp Neurol; 1966 Jul; 15(3):274-92. PubMed ID: 5947924
    [No Abstract]   [Full Text] [Related]  

  • 12. Burst pattern of unit discharges as a reflection of expectation of food reinforcement by hungry animals.
    Sudakov KV; Zhuravlev BV
    Neurosci Behav Physiol; 1981; 11(2):155-8. PubMed ID: 7279201
    [No Abstract]   [Full Text] [Related]  

  • 13. [The effect of stimulation of the mesencephalic reticular formation on delayed reactions].
    Krauz VA
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1974; 24(4):750-7. PubMed ID: 4450784
    [No Abstract]   [Full Text] [Related]  

  • 14. Postsynaptic potentials in the mesencephalic and pontomedullar reticular regions underlying descending limbic influences.
    Grantyn R; Margnelli M; Mancia M; Grantyn A
    Brain Res; 1973 Jun; 56():107-21. PubMed ID: 4351832
    [No Abstract]   [Full Text] [Related]  

  • 15. Electroencephalographic observations on role of lateral and ventromedial nuclei of hypothalamus in formation of food conditioned reflexes.
    Voronin LG; Kalyuzhnyi LV; Zakharova IN
    Fed Proc Transl Suppl; 1966; 25(2):253-7. PubMed ID: 5219757
    [No Abstract]   [Full Text] [Related]  

  • 16. [Mechanism of formation of multiplication of cortical evoked potential to photic stimulation].
    Makarenko GN
    Dokl Akad Nauk SSSR; 1973 Nov; 213(2):492-5. PubMed ID: 4767672
    [No Abstract]   [Full Text] [Related]  

  • 17. Relation of brain stem activity to the evoked potential in the spinal cord following the single volley of the splanchnic nerve.
    Urabe M; Tsubokawa T; Sakurai H; Seki M
    Folia Psychiatr Neurol Jpn; 1965; 19(1):49-67. PubMed ID: 5899887
    [No Abstract]   [Full Text] [Related]  

  • 18. Electroencephalographic correlates of learning in subcortical and cortical structures.
    Elazar Z; Adey WR
    Electroencephalogr Clin Neurophysiol; 1967 Oct; 23(4):306-19. PubMed ID: 4167764
    [No Abstract]   [Full Text] [Related]  

  • 19. Paroxysmal activity of hippocampal and thalamic epileptogenic foci and induced or spontaneous changes of vigilance.
    Roldán E; Radil-Weiss T; Chocholová L
    Exp Neurol; 1970 Oct; 29(1):121-30. PubMed ID: 5478359
    [No Abstract]   [Full Text] [Related]  

  • 20. Cyclic changes in electrical activity of the rat midbrain reticular formation during the estrous cycle.
    Terasawa E; Timiras PS
    Brain Res; 1969 Jun; 14(1):189-98. PubMed ID: 5814598
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.