These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 4164749)

  • 41. EEG landscapes: an application of computer cartography.
    Coupland SG; Taylor MJ; Koopman RF
    Psychophysiology; 1980 Jul; 17(4):413-7. PubMed ID: 7394139
    [No Abstract]   [Full Text] [Related]  

  • 42. The influence of paroxysmal spike and wave EEG activity on sensory evoked potentials in man.
    Mirsky AF; Tecce JJ
    Electroencephalogr Clin Neurophysiol; 1968 Feb; 24(2):189. PubMed ID: 4170495
    [No Abstract]   [Full Text] [Related]  

  • 43. Ambulatory EEG cassette recorders for prolonged electroencephalographic monitoring in animals.
    Bertram EH; Lothman EW
    Electroencephalogr Clin Neurophysiol; 1991 Dec; 79(6):510-2. PubMed ID: 1721579
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Computer analysis of cortical responses to stimulation of specific thalamic nuclei in man.
    Ganglberger JA; Gestring GF; Groll-Knapp E; Guttmann G; Haider M
    Electroencephalogr Clin Neurophysiol; 1969 Aug; 27(2):213-4. PubMed ID: 4184176
    [No Abstract]   [Full Text] [Related]  

  • 45. Sensory interaction: evoked potential observations in man.
    Morrell LK
    Exp Brain Res; 1968; 6(2):146-55. PubMed ID: 5721759
    [No Abstract]   [Full Text] [Related]  

  • 46. EEG responses to light flashes during the observation of stabilized and normal retinal images.
    Lehmann D; Beeler GW; Fender DH
    Electroencephalogr Clin Neurophysiol; 1967 Feb; 22(2):136-42. PubMed ID: 4163683
    [No Abstract]   [Full Text] [Related]  

  • 47. On the cerebral slow potential changes caused by rhythmic flash stimulation, with special reference to photically evoked EEG responses.
    Ozaki T; Sasaki S; Fujimori Y
    Nihon Seirigaku Zasshi; 1968; 30(3):183-4. PubMed ID: 5692506
    [No Abstract]   [Full Text] [Related]  

  • 48. A simple inexpensive, hydraulic microdrive for recording neocortical unit activity in the unanesthetized rat.
    Veregge S; Frost JD
    Electroencephalogr Clin Neurophysiol; 1985 Jul; 61(1):94-7. PubMed ID: 2408869
    [No Abstract]   [Full Text] [Related]  

  • 49. Spatial and temporal aspects of rhythmic after-waves (after-discharge) to flashing in man.
    Barlow JS; Estrin T
    Electroencephalogr Clin Neurophysiol; 1967 Jul; 23(1):78. PubMed ID: 4165570
    [No Abstract]   [Full Text] [Related]  

  • 50. Component analysis of human averaged evoked potentials: dichoptic stimuli using different target structure.
    Lehmann D; Fender DH
    Electroencephalogr Clin Neurophysiol; 1968 Jun; 24(6):542-53. PubMed ID: 4172738
    [No Abstract]   [Full Text] [Related]  

  • 51. [Experimental study of the reliability of the visually evoked response recorded from the scalp].
    Zattoni J; Giunta F; Siani C
    Riv Neurol; 1969; 39(1):58-64. PubMed ID: 5789698
    [No Abstract]   [Full Text] [Related]  

  • 52. The contingent negative variation: its relation to feedback and expectant attention.
    Weinberg H
    Neuropsychologia; 1972 Sep; 10(3):299-306. PubMed ID: 5080491
    [No Abstract]   [Full Text] [Related]  

  • 53. Aseptic implantable EEG electrodes for low impedance recordings.
    Oglesby DM; Dykman RA; Moody TC; Murphree OD
    Psychophysiology; 1976 May; 13(3):274-6. PubMed ID: 1273234
    [No Abstract]   [Full Text] [Related]  

  • 54. Maturation of the evoked response to auditory stimuli in human infants.
    Ferriss GS; Davis GD; Dorsen MM; Hackett ER
    Electroencephalogr Clin Neurophysiol; 1967 Jul; 23(1):83. PubMed ID: 4165584
    [No Abstract]   [Full Text] [Related]  

  • 55. A new multielectrode for chronic recording of intracortical field potentials in cats.
    Karmos G; Molnár M; Csépe V
    Physiol Behav; 1982 Sep; 29(3):567-71. PubMed ID: 7178263
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Transcranial magnetic stimulation and cortical evoked potentials: a TMS/EEG co-registration study.
    Bonato C; Miniussi C; Rossini PM
    Clin Neurophysiol; 2006 Aug; 117(8):1699-707. PubMed ID: 16797232
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A compact amplifier for extracellular recording.
    Brakel S; Babb T; Mahnke J; Verzeano M
    Physiol Behav; 1971 Jun; 6(6):731-3. PubMed ID: 4948154
    [No Abstract]   [Full Text] [Related]  

  • 58. Technical advances in the analysis of single, acoustically evoked potentials.
    Derbyshire AJ; Driessen GJ; Palmer CW
    Electroencephalogr Clin Neurophysiol; 1967 May; 22(5):476-81. PubMed ID: 4164637
    [No Abstract]   [Full Text] [Related]  

  • 59. Recovery cycle of visual evoked potentials in man.
    Floris V; Morocutti C; Amabile G; Bernardi G; Rizzo PA; Vasconetto C
    Electroencephalogr Clin Neurophysiol; 1967 Aug; 23(2):186. PubMed ID: 4166717
    [No Abstract]   [Full Text] [Related]  

  • 60. A method for simultaneous recording of tissue PO2 and EP in the brain cortex of a test animal with a single electrode.
    Vermariën H; van Rossem K; Altan RT; Decuyper K
    Adv Exp Med Biol; 1992; 317():653-8. PubMed ID: 1288185
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.