These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 416519)

  • 1. Effects of lead on the induction of hepatic microsomal enzymes by phenobarbital and 3,4-benzpyrene.
    Chow CP; Cornish HH
    Toxicol Appl Pharmacol; 1978 Feb; 43(2):219-28. PubMed ID: 416519
    [No Abstract]   [Full Text] [Related]  

  • 2. The effects of phenobarbital and 3,4-benzypyrene on microsomal cytochrome P-450 and NADPH-cytochrome C reductase in regenerating rat liver after partial hepatectomy or chemical injury.
    Katz DI; Stenger RJ; Johnson EA; Datta RK; Rice J
    Arch Int Pharmacodyn Ther; 1977 Oct; 229(2):180-91. PubMed ID: 413503
    [No Abstract]   [Full Text] [Related]  

  • 3. Response of NADPH cytochrome c reductase and cytochrome P-450 in hepatic microsomes to treatment with phenobarbital--differences in rat strains.
    Gold G; Widnell CC
    Biochem Pharmacol; 1975 Nov; 24(22):2105-6. PubMed ID: 813642
    [No Abstract]   [Full Text] [Related]  

  • 4. Inductive effects of 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane(DDT), phenobarbital, and benzpyrene on microsomal cytochrome B450, ethyl isocyanide spectra, and metabolism in vivo of zoxazolamine and hexobarbital in the mouse.
    Abernathy CO; Philpot RM; Guthrie FE; Hodgson E
    Biochem Pharmacol; 1971 Sep; 20(9):2395-400. PubMed ID: 5163150
    [No Abstract]   [Full Text] [Related]  

  • 5. Fluroxene (2,2,2-trifluoroethyl vinyl ether) mediated destruction of cytochrome P-450 in vitro.
    Ivanetich KM; Marsh JA; Bradshaw JJ; Kaminsky LS
    Biochem Pharmacol; 1975 Nov; 24(21):1933-6. PubMed ID: 2170
    [No Abstract]   [Full Text] [Related]  

  • 6. Purification and properties of cytochrome P-450 and NADPH-cytochrome c (P-450) reductase from human liver microsomes.
    Kamataki T; Sugiura M; Yamazoe Y; Kato R
    Biochem Pharmacol; 1979 Jul; 28(13):1993-2000. PubMed ID: 113009
    [No Abstract]   [Full Text] [Related]  

  • 7. Studies on the rate-limiting enzyme component in the microsomal monooxygenase system. Incorporation of purified NADPH-cytochrome c reductase and cytochrome P-450 into rat liver microsomes.
    Miwa GT; West SB; Lu AY
    J Biol Chem; 1978 Mar; 253(6):1921-9. PubMed ID: 416020
    [No Abstract]   [Full Text] [Related]  

  • 8. Stimulation of hepatic microsomal drug-metabolizing enzymes in mice by 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (DDT) and 3,4-benzpyrene.
    Chhabra RS; Fouts JR
    Toxicol Appl Pharmacol; 1973 May; 25(1):60-70. PubMed ID: 4714339
    [No Abstract]   [Full Text] [Related]  

  • 9. Effect of riboflavin deficiency on phenobarbital and 3-methylcholanthrene induction of microsomal drug-metabolizing enzymes of the rat.
    Shargel L; Mazel P
    Biochem Pharmacol; 1973 Oct; 22(19):2365-73. PubMed ID: 4147670
    [No Abstract]   [Full Text] [Related]  

  • 10. The effect of banol and paraoxon on the NADPH-cytochrome c reductase activity and cytochrome P-450 content in rats.
    Neskovic NK; Vitorovic SL
    Bull Environ Contam Toxicol; 1977 Oct; 18(4):472-7. PubMed ID: 411532
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Some selected studies on hepatic microsomal drug-metabolizing enzymes--environment interactions.
    Fouts JR
    Drug Metab Dispos; 1973; 1(1):380-5. PubMed ID: 4149408
    [No Abstract]   [Full Text] [Related]  

  • 12. Rate-limiting step in the reconstituted microsomal drug hydroxylase system.
    Imai Y; Sato R; Iyanagi T
    J Biochem; 1977 Nov; 82(5):1237-46. PubMed ID: 412842
    [No Abstract]   [Full Text] [Related]  

  • 13. [Lindane induction of liver microsomal monoxygenases in rats: effects of a low-calcium diet].
    PĂ©lisier MA; Faudemay F; Manchon P; Albrecht R
    Food Cosmet Toxicol; 1978 Feb; 16(1):27-31. PubMed ID: 75826
    [No Abstract]   [Full Text] [Related]  

  • 14. Microsomal mixed-function oxidase activity and senescence-I. Hexobarbital sleep time and induction of components of the hepatic microsomal enzyme system in rats of different ages.
    Baird MB; Nicolosi RJ; Massie HR; Samis HV
    Exp Gerontol; 1975 Apr; 10(2):89-99. PubMed ID: 805710
    [No Abstract]   [Full Text] [Related]  

  • 15. Membrane effects on drug monooxygenation activity in hepatic microsomes.
    Duppel W; Ullrich V
    Biochim Biophys Acta; 1976 Mar; 426(3):399-407. PubMed ID: 817739
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characteristics of a microsomal dechlorination system.
    Van Dyke RA; Gandolfi AJ
    Mol Pharmacol; 1975 Nov; 11(6):809-17. PubMed ID: 813109
    [No Abstract]   [Full Text] [Related]  

  • 17. Induction and repression of microsomal drug-metabolizing enzymes by polycyclic hydrocarbons and phenobarbital: theoretical models.
    Venkatesan N; Arcos JC; Argus MF
    J Theor Biol; 1971 Dec; 33(3):517-37. PubMed ID: 5153939
    [No Abstract]   [Full Text] [Related]  

  • 18. Hepatic drug metabolism in normal and vitamin E-deficient female Merino sheep.
    Gourlay GK; Savage JK; Stock BH
    Toxicol Appl Pharmacol; 1977 Mar; 39(3):365-75. PubMed ID: 404728
    [No Abstract]   [Full Text] [Related]  

  • 19. Effects of alteration of hepatic microsomal enzyme activity on liver blood flow in the rat.
    Nies AS; Wilkinson GR; Rush BD; Strother JR; McDevitt DG
    Biochem Pharmacol; 1976 Sep; 25(17):1991-3. PubMed ID: 985528
    [No Abstract]   [Full Text] [Related]  

  • 20. Ultrastructural concepts of drug metabolism. II. The hepatocyte: phenobarbital and microsomal enzyme induction.
    Mills ES; Jones AL
    Am J Drug Alcohol Abuse; 1974; 1(2):271-98. PubMed ID: 4219714
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.