BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

384 related articles for article (PubMed ID: 41682)

  • 1. New experiments of biotin enzymes.
    Lynen F
    CRC Crit Rev Biochem; 1979 Dec; 7(2):103-19. PubMed ID: 41682
    [TBL] [Abstract][Full Text] [Related]  

  • 2.
    Shen J; Wu W; Wang K; Wu J; Liu B; Li C; Gong Z; Hong X; Fang H; Zhang X; Xu X
    mBio; 2024 May; 15(5):e0341423. PubMed ID: 38572988
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of dietary nutrients on substrate and effector levels of lipogenic enzymes, and lipogenesis from tritiated water in rat liver.
    Katsurada A; Fukuda H; Iritani N
    Biochim Biophys Acta; 1986 Sep; 878(2):200-8. PubMed ID: 2875738
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Activities of 3-hydroxyl-3-methylglutaryl-CoA reductase and acetyl-CoA carboxylase and the rate of mevalonic acid, squalene, sterol and fatty acid biosynthesis from [1-14C]acetyl-CoA and [2-14C]malonyl-CoA in rat liver: effects of Triton WR 1339, starvation and cholesterol diet].
    Poliakova ED; Dizhe EB; Klimova TA; Denisenko TV; Vasil'eva LE
    Biokhimiia; 1981 Feb; 46(2):296-305. PubMed ID: 6113854
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence of a biotin dependent acetyl-coenzyme A carboxylase in rat muscle.
    Trumble GE; Smith MA; Winder WW
    Life Sci; 1991; 49(1):39-43. PubMed ID: 1675755
    [TBL] [Abstract][Full Text] [Related]  

  • 6. AMP-activated protein kinase and coordination of hepatic fatty acid metabolism of starved/carbohydrate-refed rats.
    Assifi MM; Suchankova G; Constant S; Prentki M; Saha AK; Ruderman NB
    Am J Physiol Endocrinol Metab; 2005 Nov; 289(5):E794-800. PubMed ID: 15956049
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Activities of 3-hydroxy-3-methylglutaryl-CoA reductase and acetyl-CoA carboxylase and rate of biosynthesis of mevalonic acid, squalene, sterols and fatty acids from [1-14C]acetyl-CoA and [2-14C]malonyl-CoA in rat liver: changes induced by daily rhythm].
    Poliakova ED; Dizhe EB; Klimova TA; Denisenko TV; Vasil'eva LE
    Biokhimiia; 1981 Jan; 46(1):126-39. PubMed ID: 6113851
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The carboxyl transferase component of acetyl CoA carboxylase: structural evidence for intersubunit translocation of the biotin prosthetic group.
    Guchhait RB; Moss J; Sokolski W; Lane MD
    Proc Natl Acad Sci U S A; 1971 Mar; 68(3):653-7. PubMed ID: 5276776
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of fatty acid synthesis and malonyl-CoA content in mouse brown adipose tissue in response to cold-exposure, starvation or re-feeding.
    Buckley MG; Rath EA
    Biochem J; 1987 Apr; 243(2):437-42. PubMed ID: 2888457
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of acetyl-CoA/propionyl-CoA carboxylase in Metallosphaera sedula. Carboxylating enzyme in the 3-hydroxypropionate cycle for autotrophic carbon fixation.
    Hügler M; Krieger RS; Jahn M; Fuchs G
    Eur J Biochem; 2003 Feb; 270(4):736-44. PubMed ID: 12581213
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plants contain multiple biotin enzymes: discovery of 3-methylcrotonyl-CoA carboxylase, propionyl-CoA carboxylase and pyruvate carboxylase in the plant kingdom.
    Wurtele ES; Nikolau BJ
    Arch Biochem Biophys; 1990 Apr; 278(1):179-86. PubMed ID: 2321957
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lipid biosynthesis in sebaceous glands: regulation of the synthesis of n- and branched fatty acids by malonyl-coenzyme A decarboxylase.
    Buckner JS; Kolattukudy PE
    Biochemistry; 1975 Apr; 14(8):1768-73. PubMed ID: 235966
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Presence of acetyl coenzyme A (CoA) carboxylase and propionyl-CoA carboxylase in autotrophic Crenarchaeota and indication for operation of a 3-hydroxypropionate cycle in autotrophic carbon fixation.
    Menendez C; Bauer Z; Huber H; Gad'on N; Stetter KO; Fuchs G
    J Bacteriol; 1999 Feb; 181(4):1088-98. PubMed ID: 9973333
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence for an anaplerotic/malonyl-CoA pathway in pancreatic beta-cell nutrient signaling.
    Brun T; Roche E; Assimacopoulos-Jeannet F; Corkey BE; Kim KH; Prentki M
    Diabetes; 1996 Feb; 45(2):190-8. PubMed ID: 8549864
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A malonyl-CoA-binding protein from liver.
    Dugan RE; Osterlund BR; Drong RF; Swenson TL
    Biochem Biophys Res Commun; 1987 Aug; 147(1):234-41. PubMed ID: 2888460
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The biotin enzyme family: conserved structural motifs and domain rearrangements.
    Jitrapakdee S; Wallace JC
    Curr Protein Pept Sci; 2003 Jun; 4(3):217-29. PubMed ID: 12769720
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stereospecificity of malonyl-CoA decarboxylase, acetyl-CoA carboxylase, and fatty acid synthetase from the uropygial gland of goose.
    Kim YS; Kolattukudy PE
    J Biol Chem; 1980 Jan; 255(2):686-9. PubMed ID: 6101330
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distribution and degradation of biotin-containing carboxylases in human cell lines.
    Chandler CS; Ballard FJ
    Biochem J; 1985 Dec; 232(2):385-93. PubMed ID: 2868710
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Malonyl CoA control of fatty acid oxidation in the newborn heart in response to increased fatty acid supply.
    Onay-Besikci A; Sambandam N
    Can J Physiol Pharmacol; 2006 Nov; 84(11):1215-22. PubMed ID: 17218986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Malonyl-CoA content and fatty acid oxidation in rat muscle and liver in vivo.
    Chien D; Dean D; Saha AK; Flatt JP; Ruderman NB
    Am J Physiol Endocrinol Metab; 2000 Aug; 279(2):E259-65. PubMed ID: 10913024
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.