These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 416893)
1. Intensity of stimulation and rod and cone response in clinical electroretinography. Brunette JR; Lafond G Can J Ophthalmol; 1978 Jan; 13(1):27-30. PubMed ID: 416893 [TBL] [Abstract][Full Text] [Related]
2. ERG responses of rods and cones during dark adaptation. Brunette JR; Lafond G Can J Ophthalmol; 1978 Jul; 13(3):186-9. PubMed ID: 100193 [TBL] [Abstract][Full Text] [Related]
3. Rod and cone ERGs and their oscillatory potentials. King-Smith PE; Loffing DH; Jones R Invest Ophthalmol Vis Sci; 1986 Feb; 27(2):270-3. PubMed ID: 3943952 [TBL] [Abstract][Full Text] [Related]
4. Using Silent Substitution to Track the Mesopic Transition From Rod- to Cone-Based Vision in Mice. Allen AE; Lucas RJ Invest Ophthalmol Vis Sci; 2016 Jan; 57(1):276-87. PubMed ID: 26818794 [TBL] [Abstract][Full Text] [Related]
5. Functional characteristics of lateral interactions between rods in the retina of the snapping turtle. Copenhagen DR; Owen WG J Physiol; 1976 Jul; 259(2):251-82. PubMed ID: 986460 [TBL] [Abstract][Full Text] [Related]
6. Rod-dependent intracellular responses to light recorded from the pigment epithelium of the cat retina. Schmidt R; Steinberg RH J Physiol; 1971 Aug; 217(1):71-91. PubMed ID: 5571953 [TBL] [Abstract][Full Text] [Related]
7. Mesopic background lights enhance dark-adapted cone ERG flash responses in the intact mouse retina: a possible role for gap junctional decoupling. Heikkinen H; Vinberg F; Nymark S; Koskelainen A J Neurophysiol; 2011 May; 105(5):2309-18. PubMed ID: 21389302 [TBL] [Abstract][Full Text] [Related]
8. [Colored light stimuli in ERG for differential diagnosis of cone dystrophies]. Kellner U; Foerster MH Klin Monbl Augenheilkd; 1992 Aug; 201(2):102-6. PubMed ID: 1434375 [TBL] [Abstract][Full Text] [Related]
9. Control of retinal sensitivity. I. Light and dark adaptation of vertebrate rods and cones. Normann RA; Werblin FS J Gen Physiol; 1974 Jan; 63(1):37-61. PubMed ID: 4359063 [TBL] [Abstract][Full Text] [Related]
10. Synaptic inputs from rods and cones to horizontal cells in the tiger salamander retina. Yang XL; Wu SM Sci China B; 1990 Aug; 33(8):946-54. PubMed ID: 2242218 [TBL] [Abstract][Full Text] [Related]
11. Effects of dark adaptation on implicit time in the clinical electroretinogram. Brunette JR; Lafond G Can J Ophthalmol; 1983 Feb; 18(1):33-6. PubMed ID: 6839202 [TBL] [Abstract][Full Text] [Related]
12. [Dark adaptation curves of rhesus monkeys studied by double flash ERG (author's transl)]. Tuboi M; Yamamoto R Nippon Ganka Gakkai Zasshi; 1976 Oct; 80(10):1028-32. PubMed ID: 827201 [No Abstract] [Full Text] [Related]
13. Photopic electroretinogram implicit time in retinitis pigmentosa. Iijima H; Yamaguchi S; Hosaka O Jpn J Ophthalmol; 1993; 37(2):130-5. PubMed ID: 8230836 [TBL] [Abstract][Full Text] [Related]
14. Multifocal rod electroretinograms. Hood DC; Wladis EJ; Shady S; Holopigian K; Li J; Seiple W Invest Ophthalmol Vis Sci; 1998 Jun; 39(7):1152-62. PubMed ID: 9620074 [TBL] [Abstract][Full Text] [Related]
15. Digoxin-induced reversible dysfunction of the cone photoreceptors in monkeys. Kinoshita J; Iwata N; Kimotsuki T; Yasuda M Invest Ophthalmol Vis Sci; 2014 Feb; 55(2):881-92. PubMed ID: 24436189 [TBL] [Abstract][Full Text] [Related]
16. Dark adaptation of horizontal cells in the teleost fish retina. Yang XL; Fan TX; Li JD Sci China B; 1991 May; 34(5):611-9. PubMed ID: 2059325 [TBL] [Abstract][Full Text] [Related]
17. Electroretinographic responses of the short-wavelength-sensitive cones. Gouras P; MacKay CJ Invest Ophthalmol Vis Sci; 1990 Jul; 31(7):1203-9. PubMed ID: 2365554 [TBL] [Abstract][Full Text] [Related]
18. Rod and cone independence in the electroretinogram of the dark-adapted monkey's perifovea. Gouras P J Physiol; 1966 Nov; 187(2):455-64. PubMed ID: 4961673 [TBL] [Abstract][Full Text] [Related]
19. Dark adaptation of separate cone systems studied with psychophysics and electroretinography. Norren DV; Padmos P Vision Res; 1974 Aug; 14(8):677-86. PubMed ID: 4213537 [No Abstract] [Full Text] [Related]
20. Changes in glucose level affect rod function more than cone function in the isolated, perfused cat eye. Macaluso C; Onoe S; Niemeyer G Invest Ophthalmol Vis Sci; 1992 Sep; 33(10):2798-808. PubMed ID: 1526729 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]