These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 416943)

  • 1. [Influence of uncorrelated noise sources in parallel signal processing chains on the coherence function (author's transl)].
    Holsheimer J; Kemp B
    EEG EMG Z Elektroenzephalogr Elektromyogr Verwandte Geb; 1978 Mar; 9(1):14-7. PubMed ID: 416943
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cognitive neuroscience of creativity: EEG based approaches.
    Srinivasan N
    Methods; 2007 May; 42(1):109-16. PubMed ID: 17434421
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatial filtering and neocortical dynamics: estimates of EEG coherence.
    Srinivasan R; Nunez PL; Silberstein RB
    IEEE Trans Biomed Eng; 1998 Jul; 45(7):814-26. PubMed ID: 9644890
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [The influence of noise on the human central nervous system (author's transl)].
    Bergamini L; Bergamasco B; Benna P; Covacich A; Furlan PM; Gilli M
    EEG EMG Z Elektroenzephalogr Elektromyogr Verwandte Geb; 1976 Jun; 7(2):92-8. PubMed ID: 829054
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A survey of signal processing algorithms in brain-computer interfaces based on electrical brain signals.
    Bashashati A; Fatourechi M; Ward RK; Birch GE
    J Neural Eng; 2007 Jun; 4(2):R32-57. PubMed ID: 17409474
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Frequency domain estimation of covariate effects in multichannel brain evoked potential data.
    Raz J; Cardenas V; Fletcher D
    Biometrics; 1995 Jun; 51(2):448-60. PubMed ID: 7662837
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improvement of spatial selectivity and decrease of mutual information of tri-polar concentric ring electrodes.
    Koka K; Besio WG
    J Neurosci Methods; 2007 Sep; 165(2):216-22. PubMed ID: 17681379
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Understanding brain connectivity from EEG data by identifying systems composed of interacting sources.
    Marzetti L; Del Gratta C; Nolte G
    Neuroimage; 2008 Aug; 42(1):87-98. PubMed ID: 18539485
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Is partial coherence a viable technique for identifying generators of neural oscillations?
    Albo Z; Di Prisco GV; Chen Y; Rangarajan G; Truccolo W; Feng J; Vertes RP; Ding M
    Biol Cybern; 2004 May; 90(5):318-26. PubMed ID: 15221392
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inverse modeling on decomposed electroencephalographic data: a way forward?
    Lelic D; Gratkowski M; Valeriani M; Arendt-Nielsen L; Drewes AM
    J Clin Neurophysiol; 2009 Aug; 26(4):227-35. PubMed ID: 19584750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Wavelet transform and its application to brain evoked potentials].
    Li L; Cheng J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 1997 Jun; 14(2):180-4. PubMed ID: 9817650
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Weighted averaging of evoked potentials.
    Davila CE; Mobin MS
    IEEE Trans Biomed Eng; 1992 Apr; 39(4):338-45. PubMed ID: 1592399
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coherence and phase locking in the scalp EEG and between LORETA model sources, and microstates as putative mechanisms of brain temporo-spatial functional organization.
    Lehmann D; Faber PL; Gianotti LR; Kochi K; Pascual-Marqui RD
    J Physiol Paris; 2006 Jan; 99(1):29-36. PubMed ID: 16054348
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous recording of laser-evoked brain potentials and continuous, high-field functional magnetic resonance imaging in humans.
    Iannetti GD; Niazy RK; Wise RG; Jezzard P; Brooks JC; Zambreanu L; Vennart W; Matthews PM; Tracey I
    Neuroimage; 2005 Nov; 28(3):708-19. PubMed ID: 16112589
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ERP denoising in multichannel EEG data using contrasts between signal and noise subspaces.
    Ivannikov A; Kalyakin I; Hämäläinen J; Leppänen PH; Ristaniemi T; Lyytinen H; Kärkkäinen T
    J Neurosci Methods; 2009 Jun; 180(2):340-51. PubMed ID: 19464521
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Filtering noise for synchronised activity in multi-trial electrophysiology data using Wiener and Kalman filters.
    Zhan Y; Guo S; Kendrick KM; Feng J
    Biosystems; 2009 Apr; 96(1):1-13. PubMed ID: 19084574
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generating sensor signals in isotropic noise fields.
    Habets EA; Gannot S
    J Acoust Soc Am; 2007 Dec; 122(6):3464-70. PubMed ID: 18247755
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [On the problem of increasing the ratio of signal to noise in electrophysiological studies].
    Voĭtinskii EIa; Prianishnikov VA
    Biofizika; 1968; 13(2):343-6. PubMed ID: 5657895
    [No Abstract]   [Full Text] [Related]  

  • 19. Generating nonstationary multisensor signals under a spatial coherence constraint.
    Habets EA; Cohen I; Gannot S
    J Acoust Soc Am; 2008 Nov; 124(5):2911-7. PubMed ID: 19045779
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conventional and wavelet coherence applied to sensory-evoked electrical brain activity.
    Klein A; Sauer T; Jedynak A; Skrandies W
    IEEE Trans Biomed Eng; 2006 Feb; 53(2):266-72. PubMed ID: 16485755
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.