These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 4170560)

  • 1. Differential staining of cartilage and bone in the intact chick embryonic skeleton in vitro.
    Burdi AR; Flecker K
    Stain Technol; 1968 Jan; 43(1):47-8. PubMed ID: 4170560
    [No Abstract]   [Full Text] [Related]  

  • 2. Whole-mount bone and cartilage staining of chick embryos with minimal decalcification.
    Yamazaki Y; Yuguchi M; Kubota S; Isokawa K
    Biotech Histochem; 2011 Oct; 86(5):351-8. PubMed ID: 20701551
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Matrices control the differentiation of cartilage and bone.
    Hall BK
    Prog Clin Biol Res; 1984; 151():147-69. PubMed ID: 6473363
    [No Abstract]   [Full Text] [Related]  

  • 4. [Method for combined staining of cellular and tissue structures in histological sections of osseous and cartilaginous tissue].
    Mazhuga PM; Vecherskaia TP
    Tsitol Genet; 1974 Mar; 8(2):160-1. PubMed ID: 4134876
    [No Abstract]   [Full Text] [Related]  

  • 5. In vitro differentiation of chick embryo bone marrow stromal cells into cartilaginous and bone-like tissues.
    Martin I; Padera RF; Vunjak-Novakovic G; Freed LE
    J Orthop Res; 1998 Mar; 16(2):181-9. PubMed ID: 9621892
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated differential staining for cartilage and bone in whole mount preparations of vertebrates.
    Rousseaux CG
    Stain Technol; 1985 Sep; 60(5):295-7. PubMed ID: 2412318
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A method for combined gross skeletal staining and Feulgen staining of embryonic chick tissues.
    Carlson BM; Simandl BK; Stocker KM; Connelly TG; Fallon JF
    Stain Technol; 1986 Jan; 61(1):27-31. PubMed ID: 2420038
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lipid-calcium-phosphate spherules in chondrocytes of developing long bones.
    Kashiwa HK; Mukai CD
    Clin Orthop Relat Res; 1971; 78():223-9. PubMed ID: 4106762
    [No Abstract]   [Full Text] [Related]  

  • 9. Intracellular and extracellular control of the differentiation of cartilage and bone.
    Hall BK
    Histochem J; 1981 Jul; 13(4):599-614. PubMed ID: 7031026
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Release of calcium from bone in vitro by homogenates of embryonic chick parathyroid glands.
    Rosen V; Clark NB
    J Exp Zool; 1983 Jun; 226(3):419-22. PubMed ID: 6886664
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Immobilization and cartilage transformation into bone in the embryonic chick.
    Hall BK
    Anat Rec; 1972 Aug; 173(4):391-403. PubMed ID: 4262207
    [No Abstract]   [Full Text] [Related]  

  • 12. [Role of mesectodermal cells arising from the cephalic neural crest in the formation of the branchial arches and visceral skeleton].
    Lievre CL
    J Embryol Exp Morphol; 1974 Apr; 31(2):453-77. PubMed ID: 4849659
    [No Abstract]   [Full Text] [Related]  

  • 13. A new procedure for whole-mount alcian blue staining of the cartilaginous skeleton of chicken embryos, adapted to the clearing procedure in potassium hydroxide.
    Simons EV; van Horn JR
    Acta Morphol Neerl Scand; 1971 May; 8(4):281-92. PubMed ID: 4104916
    [No Abstract]   [Full Text] [Related]  

  • 14. [Cytological observations in skeletal cells on the formation of the carbohydrate-protein complex].
    Knese KH
    Z Mikrosk Anat Forsch; 1969; 81(2):233-94. PubMed ID: 4248140
    [No Abstract]   [Full Text] [Related]  

  • 15. Differential staining of cartilage and bone in whole mouse fetuses by alcian blue and alizarin red S.
    McLeod MJ
    Teratology; 1980 Dec; 22(3):299-301. PubMed ID: 6165088
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hypoxia and differentiation of cartilage and bone from common germinal cells in vitro.
    Hall BK
    Life Sci; 1969 May; 8(10):553-8. PubMed ID: 5793511
    [No Abstract]   [Full Text] [Related]  

  • 17. Adhesion of osteoclasts and monocytes to developing bone.
    Martini MC; Osdoby P; Caplan AI
    J Exp Zool; 1982 Dec; 224(3):345-54. PubMed ID: 7153727
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of environment on skeletal tissue in culture.
    Fell HB
    Embryologia (Nagoya); 1969 Feb; 10(3):181-205. PubMed ID: 4898213
    [No Abstract]   [Full Text] [Related]  

  • 19. Analysis of skeletal ontogenesis through differential staining of bone and cartilage.
    Depew MJ
    Methods Mol Biol; 2008; 461():37-45. PubMed ID: 19030790
    [No Abstract]   [Full Text] [Related]  

  • 20. Role of IGFBP2, IGF-I and IGF-II in regulating long bone growth.
    Fisher MC; Meyer C; Garber G; Dealy CN
    Bone; 2005 Dec; 37(6):741-50. PubMed ID: 16183342
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.