These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
238 related articles for article (PubMed ID: 417061)
1. Catabolite inhibition and sequential metabolism of sugars by Streptococcus lactis. Thompson J; Turner KW; Thomas TD J Bacteriol; 1978 Mar; 133(3):1163-74. PubMed ID: 417061 [TBL] [Abstract][Full Text] [Related]
2. Regulation of methyl-beta-d-thiogalactopyranoside-6-phosphate accumulation in Streptococcus lactis by exclusion and expulsion mechanisms. Thompson J; Saier MH J Bacteriol; 1981 Jun; 146(3):885-94. PubMed ID: 6787017 [TBL] [Abstract][Full Text] [Related]
3. Distinct galactose phosphoenolpyruvate-dependent phosphotransferase system in Streptococcus lactis. Park YH; McKay LL J Bacteriol; 1982 Feb; 149(2):420-5. PubMed ID: 6799488 [TBL] [Abstract][Full Text] [Related]
4. Lactose metabolism in Streptococcus lactis: phosphorylation of galactose and glucose moieties in vivo. Thompson J J Bacteriol; 1979 Dec; 140(3):774-85. PubMed ID: 118155 [TBL] [Abstract][Full Text] [Related]
5. Inhibition of the phosphoenolpyruvate:lactose phosphotransferase system and activation of a cytoplasmic sugar-phosphate phosphatase in Lactococcus lactis by ATP-dependent metabolite-activated phosphorylation of serine 46 in the phosphocarrier protein HPr. Ye JJ; Reizer J; Cui X; Saier MH J Biol Chem; 1994 Apr; 269(16):11837-44. PubMed ID: 8163482 [TBL] [Abstract][Full Text] [Related]
6. Regulation of glycolysis and sugar phosphotransferase activities in Streptococcus lactis: growth in the presence of 2-deoxy-D-glucose. Thompson J; Chassy BM J Bacteriol; 1983 May; 154(2):819-30. PubMed ID: 6404888 [TBL] [Abstract][Full Text] [Related]
7. Novel phosphoenolpyruvate-dependent futile cycle in Streptococcus lactis: 2-deoxy-D-glucose uncouples energy production from growth. Thompson J; Chassy BM J Bacteriol; 1982 Sep; 151(3):1454-65. PubMed ID: 6286601 [TBL] [Abstract][Full Text] [Related]
9. Intracellular phosphorylation of glucose analogs via the phosphoenolpyruvate: mannose-phosphotransferase system in Streptococcus lactis. Thompson J; Chassy BM J Bacteriol; 1985 Apr; 162(1):224-34. PubMed ID: 3920204 [TBL] [Abstract][Full Text] [Related]
10. Involvement of lactose enzyme II of the phosphotransferase system in rapid expulsion of free galactosides from Streptococcus pyogenes. Reizer J; Saier MH J Bacteriol; 1983 Oct; 156(1):236-42. PubMed ID: 6413489 [TBL] [Abstract][Full Text] [Related]
11. Lactose metabolism in Streptococcus lactis: studies with a mutant lacking glucokinase and mannose-phosphotransferase activities. Thompson J; Chassy BM; Egan W J Bacteriol; 1985 Apr; 162(1):217-23. PubMed ID: 3920203 [TBL] [Abstract][Full Text] [Related]
12. The extent of co-metabolism of glucose and galactose by Lactococcus lactis changes with the expression of the lacSZ operon from Streptococcus thermophilus. Solem C; Koebmann B; Jensen PR Biotechnol Appl Biochem; 2008 May; 50(Pt 1):35-40. PubMed ID: 17822381 [TBL] [Abstract][Full Text] [Related]
13. Restricted sugar uptake by sugar-induced internalization of the yeast lactose/galactose permease Lac12. Rigamonte TA; Silveira WB; Fietto LG; Castro IM; Breunig KD; Passos FM FEMS Yeast Res; 2011 May; 11(3):243-51. PubMed ID: 21205157 [TBL] [Abstract][Full Text] [Related]
14. Phosphoenolpyruvate and 2-phosphoglycerate: endogenous energy source(s) for sugar accumulation by starved cells of Streptococcus lactis. Thompson J; Thomas TD J Bacteriol; 1977 May; 130(2):583-95. PubMed ID: 122509 [TBL] [Abstract][Full Text] [Related]
15. Involvement of phosphoenolpyruvate in lactose utilization by group N streptococci. McKay LL; Walter LA; Sandine WE; Elliker PR J Bacteriol; 1969 Aug; 99(2):603-10. PubMed ID: 5808082 [TBL] [Abstract][Full Text] [Related]
16. Regulation of beta-galactoside phosphate accumulation in Streptococcus pyogenes by an expulsion mechanism. Reizer J; Panos C Proc Natl Acad Sci U S A; 1980 Sep; 77(9):5497-501. PubMed ID: 7001481 [TBL] [Abstract][Full Text] [Related]
17. Influence of the lactose plasmid on the metabolism of galactose by Streptococcus lactis. LeBlanc DJ; Crow VL; Lee LN; Garon CF J Bacteriol; 1979 Feb; 137(2):878-84. PubMed ID: 106044 [TBL] [Abstract][Full Text] [Related]
18. Regulation of the lactose phosphotransferase system of Streptococcus bovis by glucose: independence of inducer exclusion and expulsion mechanisms. Cook GM; Kearns DB; Russell JB; Reizer J; Saier MH Microbiology (Reading); 1995 Sep; 141 ( Pt 9)():2261-9. PubMed ID: 7496538 [TBL] [Abstract][Full Text] [Related]
19. Altered superoxide dismutase activity by carbohydrate utilization in a Lactococcus lactis strain. Kimoto-Nira H; Moriya N; Ohmori H; Suzuki C J Food Prot; 2014 Jul; 77(7):1161-7. PubMed ID: 24988023 [TBL] [Abstract][Full Text] [Related]
20. Regulation of the glucose:H+ symporter by metabolite-activated ATP-dependent phosphorylation of HPr in Lactobacillus brevis. Ye JJ; Neal JW; Cui X; Reizer J; Saier MH J Bacteriol; 1994 Jun; 176(12):3484-92. PubMed ID: 8206825 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]