These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 4176839)

  • 1. Binding of ATP and 2,3-DPG to hemoglobin-effect on erythrocyte glycolysis.
    Garby L; de Verdier CH
    Folia Haematol Int Mag Klin Morphol Blutforsch; 1968; 89(4):421-8. PubMed ID: 4176839
    [No Abstract]   [Full Text] [Related]  

  • 2. [Theoretical studies on the influence of binding constants of hemoglobin for ATP and 2,3-diphosphoglycerate on erythrocyte glycolysis].
    Geier T; Glende M; Reich JG
    Acta Biol Med Ger; 1978; 37(7):979-92. PubMed ID: 747047
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative evaluation of respiration induced metabolic oscillations in erythrocytes.
    Hald B; Madsen MF; Danø S; Quistorff B; Sørensen PG
    Biophys Chem; 2009 Apr; 141(1):41-8. PubMed ID: 19162390
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of wall interaction, shear stress and osmotic injury on erythrocyte adenosine triphosphate concentration, 2,3 diphosphoglycerate concentration, and the oxyhemoglobin dissociation curve.
    Bernstein EF; Marzec UM
    Trans Am Soc Artif Intern Organs; 1974; 20A():47-56. PubMed ID: 4450365
    [No Abstract]   [Full Text] [Related]  

  • 5. Hematocrit and hemoglobin, ATP and DPG concentrations in Andean man: the interaction of altitude and trace metals with glycolytic and hematologic parameters in man.
    Clench J; Ferrell RE; Schull WJ; Barton SA
    Prog Clin Biol Res; 1981; 55():747-66. PubMed ID: 7291204
    [No Abstract]   [Full Text] [Related]  

  • 6. Effect of phytic acid on suicidal erythrocyte death.
    Eberhard M; Föller M; Lang F
    J Agric Food Chem; 2010 Feb; 58(3):2028-33. PubMed ID: 20058927
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regeneration of 2,3-bisphosphoglycerate and ATP of stored erythrocytes by phosphoenolpyruvate; a new preservative for blood storage.
    Hamasaki N; Hirota C; Ideguchi H; Ikehara Y
    Prog Clin Biol Res; 1981; 55():577-94. PubMed ID: 7291198
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Erythocyte destruction and hemoglobin catabolism.
    Bunn HF
    Semin Hematol; 1972 Jan; 9(1):3-17. PubMed ID: 4553045
    [No Abstract]   [Full Text] [Related]  

  • 9. [Biochemical individuality of humans and invariants of regulation. Scale invariance of the characteristic of glycolysis in erythrocytes].
    Kholodenko BN
    Biofizika; 1980; 25(2):250-7. PubMed ID: 7370336
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glycolysis in shrunken and swollen erythrocytes.
    de Verdier CH; Garby L
    Folia Haematol Int Mag Klin Morphol Blutforsch; 1968; 89(4):418-20. PubMed ID: 4176838
    [No Abstract]   [Full Text] [Related]  

  • 11. Effects of Ca2+ on erythrocyte membrane skeleton-bound phosphofructokinase, ATP levels, and hemolysis.
    Assouline-Cohen M; Beitner R
    Mol Genet Metab; 1999 Jan; 66(1):56-61. PubMed ID: 9973548
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glucose depletion enhances sensitivity to shear stress-induced mechanical damage in red blood cells by rotary blood pumps.
    Sakota D; Sakamoto R; Yokoyama N; Kobayashi M; Takatani S
    Artif Organs; 2009 Sep; 33(9):733-9. PubMed ID: 19775265
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Erythrocyte metabolism and function: hexokinase inhibition by 2,3-diphosphogly- cerate and interaction with ATP and Mg2+.
    Brewer GJ
    Biochim Biophys Acta; 1969 Nov; 192(2):157-61. PubMed ID: 5370013
    [No Abstract]   [Full Text] [Related]  

  • 14. Influence of hemoglobin precipitation on erythrocyte metabolism in alpha and beta thalassemia.
    Nathan DG; Stossel TB; Gunn RB; Zarkowsky HS; Laforet MT
    J Clin Invest; 1969 Jan; 48(1):33-41. PubMed ID: 5765025
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of amphotericin B on erythrocyte membrane cation permeability: its relation to in vivo erythrocyte survival.
    Blum SF; Shohet SB; Nathan DG; Gardner FH
    J Lab Clin Med; 1969 Jun; 73(6):980-7. PubMed ID: 5786463
    [No Abstract]   [Full Text] [Related]  

  • 16. [Changes in the regulatory characteristics of glycolysis in erythrocytes during storage of donor blood].
    Agranenko VA; Ataullakhanov FI; Batasheva TV; Vitvitskiĭ VM; Zhabotinskiĭ AM
    Vopr Med Khim; 1984; 30(3):109-12. PubMed ID: 6089428
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of glycolysis in human erythrocytes. The mechanism of ATP concentration stabilization.
    Ataullakhanov FI; Vitvitsky VM; Zhabotinsky AM; Pichugin AV; Kholodenko BN; Ehrlich LI
    Acta Biol Med Ger; 1981; 40(7-8):991-7. PubMed ID: 7331640
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hemoglobin function in stored blood. IX. Preservative with pH to maintain red blood cell 2,3-DPG (function) and ATP (viability).
    Dawson RB; Loken MR; Crater DH
    Transfusion; 1972; 12(1):46-52. PubMed ID: 5009584
    [No Abstract]   [Full Text] [Related]  

  • 19. [Significance and regulation of the pentosephosphate pathway in human erythrocytes. I. Experiments with normal erythrocytes].
    Brand K; Arese P; Rivera M
    Hoppe Seylers Z Physiol Chem; 1970 Apr; 351(4):501-8. PubMed ID: 4392678
    [No Abstract]   [Full Text] [Related]  

  • 20. [Stabilization of the relative concentration of ATP and invariants in the regulation of erythrocyte energy metabolism].
    Kholodenko BN
    Biofizika; 1980; 25(2):258-64. PubMed ID: 6445212
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.