BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

26 related articles for article (PubMed ID: 4176856)

  • 1. Biochemical processes involved in ferrihemoglobin formation by monohydroxyaniline derivatives in erythrocytes of birds and mammals.
    Blaauboer BJ; van Holsteijn CW; Wit JG
    Comp Biochem Physiol C Comp Pharmacol; 1979; 62C(2):199-203. PubMed ID: 37027
    [No Abstract]   [Full Text] [Related]  

  • 2. [Influencing by phenylhydroxylamine of the pentosephosphate pathway and glycolysis in erythrocytes during methemoglobin formation].
    Burger A; Wagner J; Uehleke H; Götz E
    Naunyn Schmiedebergs Arch Exp Pathol Pharmakol; 1967; 256(3):333-47. PubMed ID: 4385221
    [No Abstract]   [Full Text] [Related]  

  • 3. [Limiting factors of methemoglobin formation through phenylhydroxylamine in the erythrocytes of cattle, sheep and swine].
    Wagner J; Burger A
    Naunyn Schmiedebergs Arch Pharmakol Exp Pathol; 1966; 254(2):138-51. PubMed ID: 4383121
    [No Abstract]   [Full Text] [Related]  

  • 4. [Limiting factors of methemoglobin formation through phenylhydroxylamine in hemolysates of different animal species].
    Uehleke H; Burger A; Wagner J
    Naunyn Schmiedebergs Arch Pharmakol Exp Pathol; 1966; 254(2):152-8. PubMed ID: 4383434
    [No Abstract]   [Full Text] [Related]  

  • 5. [The difference between the mechanism of the effect of hydroxylamine and of phenylhydroxylamine on the metabolism of erythrocytes].
    Janata V; Wagner J
    Folia Haematol Int Mag Klin Morphol Blutforsch; 1965; 83(4):526-31. PubMed ID: 4160330
    [No Abstract]   [Full Text] [Related]  

  • 6. The influence of pH and methylene blue on the pathways of glucose utilization and lactate formation in erythrocytes of man.
    Albrecht V; Roigas H; Schultze M; Jacobasch G; Rapoport S
    Eur J Biochem; 1971 May; 20(1):44-50. PubMed ID: 4397083
    [No Abstract]   [Full Text] [Related]  

  • 7. [The glucose metabolism in erythrocytes during the methemoglobin formation through phenylhydroxylamine].
    Wagner J; Burger A; Uehleke H; Götz E
    Folia Haematol Int Mag Klin Morphol Blutforsch; 1968; 89(4):536-48. PubMed ID: 4176856
    [No Abstract]   [Full Text] [Related]  

  • 8. Comparative erythrocyte metabolism.
    Kaneko JJ
    Adv Vet Sci Comp Med; 1974; 18(0):117-53. PubMed ID: 4153603
    [No Abstract]   [Full Text] [Related]  

  • 9. Glucose-6-phosphate dehydrogenase in mature erythrocytes.
    Marks PA
    Am J Clin Pathol; 1967 Mar; 47(3):287-95. PubMed ID: 4381275
    [No Abstract]   [Full Text] [Related]  

  • 10. The biological oxidation of aromatic heterocyclic amines.
    Gorrod JW
    Xenobiotica; 1971; 1(4):349-59. PubMed ID: 4369269
    [No Abstract]   [Full Text] [Related]  

  • 11. [Mechanisms of adaptation to hypoxia in the red blood system].
    Simanovskiĭ LN
    Vopr Med Khim; 1971; 17(3):227-39. PubMed ID: 4938770
    [No Abstract]   [Full Text] [Related]  

  • 12. Nitrogen oxidation in ferrihaemoglobin formation.
    Kiese M
    Xenobiotica; 1971; 1(4):553-62. PubMed ID: 4152973
    [No Abstract]   [Full Text] [Related]  

  • 13.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 14.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 15.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 16.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 17.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 18.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.