These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 4176856)
1. [The glucose metabolism in erythrocytes during the methemoglobin formation through phenylhydroxylamine]. Wagner J; Burger A; Uehleke H; Götz E Folia Haematol Int Mag Klin Morphol Blutforsch; 1968; 89(4):536-48. PubMed ID: 4176856 [No Abstract] [Full Text] [Related]
2. [Influencing by phenylhydroxylamine of the pentosephosphate pathway and glycolysis in erythrocytes during methemoglobin formation]. Burger A; Wagner J; Uehleke H; Götz E Naunyn Schmiedebergs Arch Exp Pathol Pharmakol; 1967; 256(3):333-47. PubMed ID: 4385221 [No Abstract] [Full Text] [Related]
3. [Limiting factors of methemoglobin formation through phenylhydroxylamine in the erythrocytes of cattle, sheep and swine]. Wagner J; Burger A Naunyn Schmiedebergs Arch Pharmakol Exp Pathol; 1966; 254(2):138-51. PubMed ID: 4383121 [No Abstract] [Full Text] [Related]
4. [Limiting factors of methemoglobin formation through phenylhydroxylamine in hemolysates of different animal species]. Uehleke H; Burger A; Wagner J Naunyn Schmiedebergs Arch Pharmakol Exp Pathol; 1966; 254(2):152-8. PubMed ID: 4383434 [No Abstract] [Full Text] [Related]
5. [The difference between the mechanism of the effect of hydroxylamine and of phenylhydroxylamine on the metabolism of erythrocytes]. Janata V; Wagner J Folia Haematol Int Mag Klin Morphol Blutforsch; 1965; 83(4):526-31. PubMed ID: 4160330 [No Abstract] [Full Text] [Related]
6. The influence of pH and methylene blue on the pathways of glucose utilization and lactate formation in erythrocytes of man. Albrecht V; Roigas H; Schultze M; Jacobasch G; Rapoport S Eur J Biochem; 1971 May; 20(1):44-50. PubMed ID: 4397083 [No Abstract] [Full Text] [Related]
7. Formation of methaemoglobin by phenylhydroxylamine and activity of glucose-6-phosphate dehydrogenase in the erythrocytes of different animal species. Burger A; Stöffler G; Uehleke H; Wagner J Med Pharmacol Exp Int J Exp Med; 1966; 15(5):525-9. PubMed ID: 6012514 [No Abstract] [Full Text] [Related]
8. [Carbohydrate metabolism and its role in the formation of biologically important cell compounds]. Golovatskiĭ ID Ukr Biokhim Zh; 1970; 42(3):309-16. PubMed ID: 5531095 [No Abstract] [Full Text] [Related]
9. [Significance and regulation of the pentosephosphate pathway in human erythrocytes. II. Experiments with glucose-6-phosphate dehydrogenase-deficient erythrocytes]. Brand K; Arese P; Rivera M Hoppe Seylers Z Physiol Chem; 1970 Apr; 351(4):509-14. PubMed ID: 4392679 [No Abstract] [Full Text] [Related]
11. [Significance and regulation of the pentosephosphate pathway in human erythrocytes. I. Experiments with normal erythrocytes]. Brand K; Arese P; Rivera M Hoppe Seylers Z Physiol Chem; 1970 Apr; 351(4):501-8. PubMed ID: 4392678 [No Abstract] [Full Text] [Related]
12. Hereditary methemoglobinemia, toxic methemoglobinemia and the reduction of methemoglobin. Jaffé ER; Neumann G Ann N Y Acad Sci; 1968 Jul; 151(2):795-806. PubMed ID: 4313162 [No Abstract] [Full Text] [Related]
13. [Lactic and pyruvic acid content and lactate dehydrogenase activity in erythrocytes in mitral stenosis]. Kukhta VK; Cheshchevik AB; Selitskaia AA Vopr Med Khim; 1973; 19(4):426-30. PubMed ID: 4802253 [No Abstract] [Full Text] [Related]
14. Pentose phosphate pathway metabolism by normal and glucose-6-phosphate dehydrogenase-deficient human red cell haemolysates. Sturman JA Clin Chim Acta; 1967 Nov; 18(2):245-8. PubMed ID: 4383831 [No Abstract] [Full Text] [Related]
15. Biochemical processes involved in ferrihemoglobin formation by monohydroxyaniline derivatives in erythrocytes of birds and mammals. Blaauboer BJ; van Holsteijn CW; Wit JG Comp Biochem Physiol C Comp Pharmacol; 1979; 62C(2):199-203. PubMed ID: 37027 [No Abstract] [Full Text] [Related]
16. [VII. Activities of transfer RNA, aminoacyl--transfer RNA synthetases and ribosomes from various organ tissues and tumors]. Heller G; Neth R Hoppe Seylers Z Physiol Chem; 1970 Apr; 351(4):489-500. PubMed ID: 4393720 [No Abstract] [Full Text] [Related]
17. [Fanconi's anemia. Transformation into leukemia and erythrocyte metabolism findings]. Götz M; Handel H; Pichler E; Weippl G Kinderarztl Prax; 1974 May; 42(5):69-74. PubMed ID: 4277192 [No Abstract] [Full Text] [Related]
18. Glucose-6-phosphate dehydrogenase in mature erythrocytes. Marks PA Am J Clin Pathol; 1967 Mar; 47(3):287-95. PubMed ID: 4381275 [No Abstract] [Full Text] [Related]
19. METHEMOGLOBIN REDUCTION. STUDIES OF THE INTERACTION BETWEEN CELL POPULATIONS AND OF THE ROLE OF METHYLENE BLUE. BEUTLER E; BALUDA MC Blood; 1963 Sep; 22():323-33. PubMed ID: 14056871 [No Abstract] [Full Text] [Related]
20. Methemoglobin formation and reduction in man and various animal species. Smith JE; Beutler E Am J Physiol; 1966 Feb; 210(2):347-50. PubMed ID: 5901473 [No Abstract] [Full Text] [Related] [Next] [New Search]