BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

356 related articles for article (PubMed ID: 417755)

  • 1. Saccades induced by stimulation of the frontal eye fields: interaction with voluntary and reflexive eye movements.
    Marrocco RT
    Brain Res; 1978 May; 146(1):23-34. PubMed ID: 417755
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Suppression of task-related saccades by electrical stimulation in the primate's frontal eye field.
    Burman DD; Bruce CJ
    J Neurophysiol; 1997 May; 77(5):2252-67. PubMed ID: 9163356
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Horizontal saccades induced by stimulation of the central mesencephalic reticular formation.
    Cohen B; Matsuo V; Fradin J; Raphan T
    Exp Brain Res; 1985; 57(3):605-16. PubMed ID: 3979501
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Primate frontal eye fields. II. Physiological and anatomical correlates of electrically evoked eye movements.
    Bruce CJ; Goldberg ME; Bushnell MC; Stanton GB
    J Neurophysiol; 1985 Sep; 54(3):714-34. PubMed ID: 4045546
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Suppressive control of optokinetic and vestibular nystagmus by the primate frontal eye field.
    Izawa Y; Suzuki H
    J Neurophysiol; 2020 Sep; 124(3):691-702. PubMed ID: 32727256
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Frontal 'oculomotor' area in alert cat. II. Unit discharges associated with eye movements and neck muscle activity.
    Guitton D; Mandl G
    Brain Res; 1978 Jun; 149(2):313-27. PubMed ID: 667604
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Central mesencephalic reticular formation (cMRF) neurons discharging before and during eye movements.
    Waitzman DM; Silakov VL; Cohen B
    J Neurophysiol; 1996 Apr; 75(4):1546-72. PubMed ID: 8727396
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monkey superior colliculus represents rapid eye movements in a two-dimensional motor map.
    Hepp K; Van Opstal AJ; Straumann D; Hess BJ; Henn V
    J Neurophysiol; 1993 Mar; 69(3):965-79. PubMed ID: 8385203
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Frontal lobe lesions in man cause difficulties in suppressing reflexive glances and in generating goal-directed saccades.
    Guitton D; Buchtel HA; Douglas RM
    Exp Brain Res; 1985; 58(3):455-72. PubMed ID: 4007089
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interactions between visually and electrically elicited saccades before and after superior colliculus and frontal eye field ablations in the rhesus monkey.
    Schiller PH; Sandell JH
    Exp Brain Res; 1983; 49(3):381-92. PubMed ID: 6641836
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neural mechanisms underlying target selection with saccadic eye movements.
    Schiller PH; Tehovnik EJ
    Prog Brain Res; 2005; 149():157-71. PubMed ID: 16226583
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microstimulation of the lateral wall of the intraparietal sulcus compared with the frontal eye field during oculomotor tasks.
    Mushiake H; Fujii N; Tanji J
    J Neurophysiol; 1999 Mar; 81(3):1443-8. PubMed ID: 10085372
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discharge characteristics of vestibular and saccade neurons in the rostral midbrain of alert cats.
    Fukushima K; Ohashi T; Fukushima J; Kaneko CR
    J Neurophysiol; 1995 Jun; 73(6):2129-43. PubMed ID: 7666128
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic properties of eye position coded neurons in the alert monkey during saccades.
    Eckmiller R
    Pflugers Arch; 1975 Jun; 357(3-4):253-65. PubMed ID: 812054
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impairment but not abolishment of express saccades after unilateral or bilateral inactivation of the frontal eye fields.
    Dash S; Peel TR; Lomber SG; Corneil BD
    J Neurophysiol; 2020 May; 123(5):1907-1919. PubMed ID: 32267202
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direction of saccadic and smooth eye movements induced by electrical stimulation of the human frontal eye field: effect of orbital position.
    Blanke O; Seeck M
    Exp Brain Res; 2003 May; 150(2):174-83. PubMed ID: 12677314
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of eye position within the orbit on electrically elicited saccadic eye movements: a comparison of the macaque monkey's frontal and supplementary eye fields.
    Russo GS; Bruce CJ
    J Neurophysiol; 1993 Mar; 69(3):800-18. PubMed ID: 8385196
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dissociation of saccade-related and pursuit-related activation in human frontal eye fields as revealed by fMRI.
    Petit L; Clark VP; Ingeholm J; Haxby JV
    J Neurophysiol; 1997 Jun; 77(6):3386-90. PubMed ID: 9212283
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Brainstem control of saccadic eye movements.
    Fuchs AF; Kaneko CR; Scudder CA
    Annu Rev Neurosci; 1985; 8():307-37. PubMed ID: 3920944
    [No Abstract]   [Full Text] [Related]  

  • 20. Interaction of the two frontal eye fields before saccade onset.
    Schlag J; Dassonville P; Schlag-Rey M
    J Neurophysiol; 1998 Jan; 79(1):64-72. PubMed ID: 9425177
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.