These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 417825)

  • 21. Descending pathways from the brain stem to the spinal cord in some reptiles. II. Course and site of termination.
    Ten Donkelaar HJ
    J Comp Neurol; 1976 Jun; 167(4):443-63. PubMed ID: 1270629
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Development of the Muellerian ducts in the embryo of the blindworm (Anguis fragilis L.)].
    RAYNAUD A
    C R Seances Soc Biol Fil; 1961; 155():1893-5. PubMed ID: 14490727
    [No Abstract]   [Full Text] [Related]  

  • 23. [Early secretory activity of the endocrine glands of the blindworm embryo (Anguis fragilis L.)].
    RAYNAUD A; RAYNAUD J
    C R Hebd Seances Acad Sci; 1961 Nov; 253():2254-6. PubMed ID: 14490726
    [No Abstract]   [Full Text] [Related]  

  • 24. [The relation between the rudiment of the adrenal cortex and the mesonephros in the blind worm embryo (Anguis fragilis L.)].
    RAYNAUD A
    C R Hebd Seances Acad Sci; 1962 Mar; 254():2436-8. PubMed ID: 14490729
    [No Abstract]   [Full Text] [Related]  

  • 25. [Cytophotometric studies on the levels of proteins and RNA in the nuclei of the apical crest ane the epiblast of the limb bud of the green lizard (Lacerta viridis Laur.) and the blindworm (Anguis fragilis L)].
    Raynaud A; Jeanny JC; Gontcharoff M
    C R Acad Hebd Seances Acad Sci D; 1975 Jun; 280(23):2693-6. PubMed ID: 809153
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Epidermal differentiation in embryos of the tuatara Sphenodon punctatus (Reptilia, Sphenodontidae) in comparison with the epidermis of other reptiles.
    Alibardi L; Gill BJ
    J Anat; 2007 Jul; 211(1):92-103. PubMed ID: 17532799
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The sources of supraspinal afferents to the spinal cord in a variety of limbed reptiles. I. Reticulospinal systems.
    Newman DB; Cruce WL; Bruce LL
    J Comp Neurol; 1983 Mar; 215(1):17-32. PubMed ID: 6853763
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Distribution and development of glutamic acid decarboxylase immunoreactivity in the spinal cord of the dogfish Scyliorhinus canicula (elasmobranchs).
    Sueiro C; Carrera I; Molist P; Rodríguez-Moldes I; Anadón R
    J Comp Neurol; 2004 Oct; 478(2):189-206. PubMed ID: 15349979
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [The relations between somites and Wolffian crest in reptile embryos].
    Raynaud A; Vasse J
    Arch Biol (Liege); 1969; 80(1):95-120. PubMed ID: 5811614
    [No Abstract]   [Full Text] [Related]  

  • 30. The central connexions of dorsal spinal nerve roots and the ascending tracts in the spinal cord of Lacerta viridis.
    GOLDBY F; ROBINSON LR
    J Anat; 1962 Apr; 96(Pt 2):153-70. PubMed ID: 13899722
    [No Abstract]   [Full Text] [Related]  

  • 31. Spinal cord transection--no loss of distal ventral horn neurons. Modern stereological techniques reveal no transneuronal changes in the ventral horns of the mouse lumbar spinal cord after thoracic cord transection.
    Bjugn R; Nyengaard JR; Rosland JH
    Exp Neurol; 1997 Nov; 148(1):179-86. PubMed ID: 9400423
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Afferent connections of the cerebellum in various types of reptiles.
    Bangma GC; ten Donkelaar H
    J Comp Neurol; 1982 May; 207(3):255-73. PubMed ID: 7107986
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Synaptogenesis in the anterior horns of the spinal cord of human embryos].
    Milokhin AA; Chernova IV
    Biull Eksp Biol Med; 1981 Apr; 91(4):498-500. PubMed ID: 7260370
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structural changes in vertebrate fetal membranes associated with the adoption of viviparity.
    Mossman HW
    Obstet Gynecol Annu; 1974; 3(0):7-32. PubMed ID: 4607800
    [No Abstract]   [Full Text] [Related]  

  • 35. Development of spinal motor networks in the chick embryo.
    O'Donovan M; Sernagor E; Sholomenko G; Ho S; Antal M; Yee W
    J Exp Zool; 1992 Mar; 261(3):261-73. PubMed ID: 1629659
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Central projections of brachial and lumbar dorsal roots in reptiles.
    Joseph BS; Whitlock DG
    J Comp Neurol; 1968 Mar; 132(3):469-84. PubMed ID: 4173078
    [No Abstract]   [Full Text] [Related]  

  • 37. [THE DEVELOPMENT AND DIFFERENTIATION OF MUELLER'S DUCTS IN BLIND-WORM EMBRYOS (ANGUIS FRAGILIS L.)].
    RAYNAUD A; RAYNAUD J
    C R Hebd Seances Acad Sci; 1964 Apr; 258():4144-7. PubMed ID: 14146807
    [No Abstract]   [Full Text] [Related]  

  • 38. Development of catecholaminergic systems in the spinal cord of the dogfish Scyliorhinus canicula (Elasmobranchs).
    Sueiro C; Carrera I; Rodríguez-Moldes I; Molist P; Anadón R
    Brain Res Dev Brain Res; 2003 May; 142(2):141-50. PubMed ID: 12711365
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Occurrence of neuropeptide K-like immunoreactivity in ventral horn cells of the chicken spinal cord during development.
    Villar MJ; Roa M; Huchet M; Changeux JP; Valentino KL; Hökfelt T
    Brain Res; 1991 Feb; 541(1):149-53. PubMed ID: 2029616
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Some aspects of the morphology and connections of motor neurons of the anterior horn of the spinal cord in batrachians and reptiles].
    RODRIGUEZ-PEREZ AP
    Trab Inst Cajal Invest Biol; 1960; 52():101-30. PubMed ID: 14493222
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.