These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 4179127)

  • 21. Patterns of postnatal development of the ultrastructures of invertebrate and vertebrate nerve tissue.
    Glezer II; Erokhin-Peretolchina NM
    Neurosci Behav Physiol; 1973; 6(1):51-61. PubMed ID: 4763451
    [No Abstract]   [Full Text] [Related]  

  • 22. [Ultrastructure of stellate neurons of the cat and monkey cerebral cortex].
    Mikeladze AL; Kakabadze IM
    Tsitologiia; 1973 Aug; 15(8):981-4. PubMed ID: 4204471
    [No Abstract]   [Full Text] [Related]  

  • 23. The section-Golgi impregnation procedure. 2. Immunocytochemical demonstration of glutamate decarboxylase in Golgi-impregnated neurons and in their afferent synaptic boutons in the visual cortex of the cat.
    Somogyi P; Freund TF; Wu JY; Smith AD
    Neuroscience; 1983 Jul; 9(3):475-90. PubMed ID: 6194475
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A combined Golgi-electron microscopic study of the synapses made by the proximal axon and recurrent collaterals of a pyramidal cell in the somatic sensory cortex of the monkey.
    Winfield DA; Brooke RN; Sloper JJ; Powell TP
    Neuroscience; 1981; 6(7):1217-30. PubMed ID: 6167895
    [No Abstract]   [Full Text] [Related]  

  • 25. The cytology of the posterior lateral line lobe of high-frequency weakly electric fish (Gymnotidae): dendritic differentiation and synaptic specificity in a simple cortex.
    Maler L; Sas EK; Rogers J
    J Comp Neurol; 1981 Jan; 195(1):87-139. PubMed ID: 7204653
    [No Abstract]   [Full Text] [Related]  

  • 26. Some data on postnatal maturation of the cerebral cortex in cat.
    Tömböl T
    Acta Biol Acad Sci Hung; 1980; 31(1-3):341-65. PubMed ID: 6164190
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Light and electron microscope study of neurons and synapses in neonatal mouse olfactory bulb cultured in vitro.
    Kim SU
    Exp Neurol; 1972 Aug; 36(2):336-49. PubMed ID: 4115416
    [No Abstract]   [Full Text] [Related]  

  • 28. Investigation of glial cells in semithin sections. II. Variation with age in the numbers of the various glial cell types in rat cortex and corpus callosum.
    Ling EA; Leblond CP
    J Comp Neurol; 1973 May; 149(1):73-81. PubMed ID: 4121706
    [No Abstract]   [Full Text] [Related]  

  • 29. The maturation of human cerebral cortex in electron microscopy study of post-mortem punctures in premature infants.
    Gruner JE
    Biol Neonate; 1970; 16(4):243-55. PubMed ID: 5528511
    [No Abstract]   [Full Text] [Related]  

  • 30. Self-assembly of cortical plate cells in vitro within embryonic mouse cerebral aggregates. Golgi and electron microscopic analysis.
    Garber BB; Huttenlocher PR; Larramendi LH
    Brain Res; 1980 Nov; 201(2):255-78. PubMed ID: 7417843
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Inverted pyramidal neurons and their axons in the neocortex of reeler mutant mice.
    Landrieu P; Goffinet A
    Cell Tissue Res; 1981; 218(2):293-301. PubMed ID: 6167365
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Developmental and evolutionary adaptations of cortical radial glia.
    Rakic P
    Cereb Cortex; 2003 Jun; 13(6):541-9. PubMed ID: 12764027
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synaptic patterns on different cell types in the different laminae of the cat visual cortex. An electron microscope study.
    Colonnier M
    Brain Res; 1968 Jul; 9(2):268-87. PubMed ID: 4175993
    [No Abstract]   [Full Text] [Related]  

  • 34. Quantitative studies of postnatal changes in synapses in rat superficial motor cerebral cortex. An electron microscopical study.
    Armstrong-James M; Johnson R
    Z Zellforsch Mikrosk Anat; 1970; 110(4):559-68. PubMed ID: 5515538
    [No Abstract]   [Full Text] [Related]  

  • 35. Origin of the pericellular baskets of the pyramidal cells of the human motor cortex: a Golgi study.
    Marin-Padilla M
    Brain Res; 1969 Aug; 14(3):633-46. PubMed ID: 4186210
    [No Abstract]   [Full Text] [Related]  

  • 36. Organization of cerebellar cortex secondary to deficit of granule cells in weaver mutant mice.
    Rakic P; Sidman RL
    J Comp Neurol; 1973 Nov; 152(2):133-61. PubMed ID: 4761656
    [No Abstract]   [Full Text] [Related]  

  • 37. [The differentiation of isolated nerve and glia cells from trypsinized spinal cord of chicken embryos cultivated in vitro. A light and electron microscopical investigation].
    Meller K; Breipohl W; Wagner HH; Knuth A
    Z Zellforsch Mikrosk Anat; 1969 Oct; 101(1):135-51. PubMed ID: 4901653
    [No Abstract]   [Full Text] [Related]  

  • 38. Emerging roles of neural stem cells in cerebral cortex development and evolution.
    Borrell V; Reillo I
    Dev Neurobiol; 2012 Jul; 72(7):955-71. PubMed ID: 22684946
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electron microscopical studies of the cerebellar molecular layer.
    Gobel S
    J Ultrastruct Res; 1967 Dec; 21(5):430-58. PubMed ID: 5590727
    [No Abstract]   [Full Text] [Related]  

  • 40. Newborn basal forebrain lesions disrupt cortical cytodifferentiation as visualized by rapid Golgi staining.
    Höhmann CF; Kwiterovich KK; Oster-Granite ML; Coyle JT
    Cereb Cortex; 1991; 1(2):143-57. PubMed ID: 1726603
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.