These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 4182397)

  • 1. Mechanism of inhibition by uncouples of succinate oxidation in isolated mitochondria.
    Papa S; Lofrumento NE; Paradies G; Quagliariello E
    Biochim Biophys Acta; 1969 May; 180(1):35-44. PubMed ID: 4182397
    [No Abstract]   [Full Text] [Related]  

  • 2. Inhibitory action of oxaloacetate on succinate oxidation in rat-liver mitochondria and the mechanism of its reversal.
    Wojtczak AB
    Biochim Biophys Acta; 1969 Jan; 172(1):52-65. PubMed ID: 4387597
    [No Abstract]   [Full Text] [Related]  

  • 3. Effect of ATP on the oxidation of succinate in rat brain mitochondria.
    Tuena M; Gómez-Puyou A; Peña A; Chávez E; Sandoval F
    Eur J Biochem; 1969 Dec; 11(2):283-90. PubMed ID: 5360409
    [No Abstract]   [Full Text] [Related]  

  • 4. Role of phosphopyruvate carboxylase in the control of succinate oxidation in rabbit-kidney mitochondria.
    Papa S; Lofrumento NE; Quagliariello E
    Biochim Biophys Acta; 1965 Nov; 110(2):442-4. PubMed ID: 5866397
    [No Abstract]   [Full Text] [Related]  

  • 5. Substrate transformations dependent on respiratory states of mitochondria. Changes in metabolic control sites of rabbit heart mitochondria.
    Von Korff RW
    Nature; 1967 Apr; 214(5083):23-6. PubMed ID: 4382270
    [No Abstract]   [Full Text] [Related]  

  • 6. Amino acid synthesis by the mitochondria of Neurospora crassa. I. Dependence on respiration of mitochondria.
    Bergquist A; LaBrie DA; Wagner RP
    Arch Biochem Biophys; 1969 Nov; 134(2):401-7. PubMed ID: 5354770
    [No Abstract]   [Full Text] [Related]  

  • 7. The inhibition by 2,4-dinitrophenol of the removal of oxaloacetate formed by the oxidation of succinate by rat-liver and -heart mitochondria.
    Oestreicher AB; Van den Bergh SG; Slater EC
    Biochim Biophys Acta; 1969 May; 180(1):45-55. PubMed ID: 5787271
    [No Abstract]   [Full Text] [Related]  

  • 8. ADP-dependent palmitoylcarnitine sensitivity of mitochondria isolated from the perfused rabbit heart.
    Kako KJ
    Can J Biochem; 1969 Jun; 47(6):611-8. PubMed ID: 4307214
    [No Abstract]   [Full Text] [Related]  

  • 9. Succinate-driven reverse electron transport in the respiratory chain of plant mitochondria. The effects of rotenone and adenylates in relation to malate and oxaloacetate metabolism.
    Rustin P; Lance C
    Biochem J; 1991 Feb; 274 ( Pt 1)(Pt 1):249-55. PubMed ID: 2001241
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Apparent respiratory control in uncoupled mitochondria.
    Fritz IB; Beyer RE
    J Biol Chem; 1969 Jun; 244(11):3075-83. PubMed ID: 5772473
    [No Abstract]   [Full Text] [Related]  

  • 11. Inhibition of pyruvate carboxylation by fluorocitrate in rat kidney mitochondria.
    Mehlman MA
    J Biol Chem; 1968 Apr; 243(8):1919-25. PubMed ID: 5646483
    [No Abstract]   [Full Text] [Related]  

  • 12. [Metabolism of succinic acid in rat brain mitochondria].
    Papa S; Lofrumento NE; De Gregorio G; Paradies G; Quagliariello E
    Boll Soc Ital Biol Sper; 1967 Oct; 43(19):1233-7. PubMed ID: 5589830
    [No Abstract]   [Full Text] [Related]  

  • 13. [Inhibition of succinate oxidation in mitochondria, due to the uncoupling of oxidative phosphorylation].
    Papa S; Lofrumento NE; Paradies G; Quagliariello E
    Boll Soc Ital Biol Sper; 1967 Oct; 43(19):1237-41. PubMed ID: 4173112
    [No Abstract]   [Full Text] [Related]  

  • 14. A mechanism for the regulation of nicotinamide adenine dinucleotide-linked substrate oxidation in rat liver mitochondria.
    Olson MS; Allgyer TT
    J Biol Chem; 1973 Mar; 248(5):1590-7. PubMed ID: 4144391
    [No Abstract]   [Full Text] [Related]  

  • 15. [Regulation of the respiratory activity of pig heart mitochondria and the transformation of the adenylic nucleotides and of phosphate].
    Godinot C; Vial C; Font B; Gautheron D
    Eur J Biochem; 1969 Apr; 8(3):385-94. PubMed ID: 4979487
    [No Abstract]   [Full Text] [Related]  

  • 16. Utilization of respiratory substrates in calf-retina mitochondria.
    Papa S; Lofrumento NE; Secchi AG; Quagliariello E
    Biochim Biophys Acta; 1967 Mar; 131(2):288-94. PubMed ID: 4292844
    [No Abstract]   [Full Text] [Related]  

  • 17. [Oxidative phosphorylation by mitochondria from brown adipose tissue].
    Hohorst HJ; Rafael J
    Hoppe Seylers Z Physiol Chem; 1968 Feb; 349(2):268-70. PubMed ID: 5677015
    [No Abstract]   [Full Text] [Related]  

  • 18. Incorporation of amino acids by isolated rat liver and skeletal muscle mitochondria.
    Sirotzky de Favelukes S; Schwarcz de Tarlovsky M; Stoppani AO
    Acta Physiol Lat Am; 1971; 21(1):30-9. PubMed ID: 5153060
    [No Abstract]   [Full Text] [Related]  

  • 19. [Substrate permeation into mitochondria with special attention to the permeation of pyruvate].
    Klingenberg M
    Hoppe Seylers Z Physiol Chem; 1970 Mar; 351(3):275-7. PubMed ID: 5420684
    [No Abstract]   [Full Text] [Related]  

  • 20. Substrate transformations dependent on respiratory states of mitochondria. Functional status and metabolic changes in rabbit heart mitochondria during pyruvate oxidation.
    Schäfer G; Balde P; Lamprecht W
    Nature; 1967 Apr; 214(5083):20-3. PubMed ID: 6033333
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.