These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 418444)

  • 1. Tolerance to the increased locomotor activity produced by L-5-hydroxytryptophan following peripheral decarboxylase inhibition in mice.
    Magyar RL; Gillin JC; Wyatt RJ
    Psychopharmacology (Berl); 1978 Apr; 56(3):343-50. PubMed ID: 418444
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Time and dose influences on the behavioral effects of L-DOPA and 5-hydroxytryptophan after inhibition of extracerebral decarboxylase.
    Gronan RJ
    Pharmacol Biochem Behav; 1975; 3(2):161-6. PubMed ID: 1079949
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Central 5-HTP decarboxylase inhibiting properties of Ro 4-4602 in relation to 5-HTP potentiation in mice.
    Hyttel J; Fjalland B
    Eur J Pharmacol; 1972 Jul; 19(1):112-4. PubMed ID: 4538041
    [No Abstract]   [Full Text] [Related]  

  • 4. Effects of chlorimipramine and protriptyline on the hyperactivity induced by 5-hydroxytryptophan after peripheral decarboxylase inhibition in mice.
    Modigh K
    J Neural Transm; 1973; 34(2):101-9. PubMed ID: 4541821
    [No Abstract]   [Full Text] [Related]  

  • 5. Central versus peripheral effects on temperature preference and body temperature following alteration of 5-HT in maturing mice.
    Goodrich C; Lechner R; Slone W
    Physiol Behav; 1989 Aug; 46(2):203-9. PubMed ID: 2602460
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An unexpected effect of L-5 hydroxytryptophan-ethyl-ester combined with a peripheral decarboxylase inhibitor on human serum prolactin.
    van Praag HM; Korf J; Lequin RM
    Psychopharmacol Commun; 1976; 2(5-6):369-78. PubMed ID: 1088302
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of peripheral mechanisms in the behavioral effects of 5-hydroxytryptophan.
    Carter RB; Dykstra LA; Leander JD; Appel JB
    Pharmacol Biochem Behav; 1978 Aug; 9(2):249-53. PubMed ID: 309609
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The serotonin precursor 5-hydroxytryptophan elevates serum leptin levels in mice.
    Yamada J; Sugimoto Y; Ujikawa M
    Eur J Pharmacol; 1999 Oct; 383(1):49-51. PubMed ID: 10556680
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reverse tolerance to amphetamine evokes reverse tolerance to 5-hydroxytryptophan.
    Karler R; Calder LD; Turkanis SA
    Life Sci; 1990; 46(24):1773-80. PubMed ID: 2359350
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of tolerance to the wet-dog shake behaviour but not the increase in seizure threshold induced by L-5-hydroxytryptophan during continued treatment in rats.
    Pagliusi SR; Löscher W
    Psychopharmacology (Berl); 1985; 86(1-2):118-24. PubMed ID: 2410943
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of carbidopa on the cerebral accumulation of exogenous L-5-hydroxytryptophan in mice.
    Magnussen I
    Acta Pharmacol Toxicol (Copenh); 1984 Sep; 55(3):199-202. PubMed ID: 6334429
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Studies on DL-5-hydroxytryptophan-induced hyperactivity in mice.
    Modigh K
    Adv Biochem Psychopharmacol; 1974; 10():213-7. PubMed ID: 4546515
    [No Abstract]   [Full Text] [Related]  

  • 13. Central and peripheral mechanisms contribute to the antiemetic actions of delta-9-tetrahydrocannabinol against 5-hydroxytryptophan-induced emesis.
    Darmani NA; Johnson JC
    Eur J Pharmacol; 2004 Mar; 488(1-3):201-12. PubMed ID: 15044052
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of serotonin and L-5-hydroxytryptophan on plasma renin activity in rats.
    Barney CC; Threatte RM; Kikta DC; Fregly MJ
    Pharmacol Biochem Behav; 1981 Jun; 14(6):895-900. PubMed ID: 7019933
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monoamine precursors and copulatory behavior in the male rat.
    Malmnäs CO
    Acta Physiol Scand Suppl; 1973; 400():47-68. PubMed ID: 4546480
    [No Abstract]   [Full Text] [Related]  

  • 16. Central and peripheral effects of 5-hydroxytryptophan on motor activity in mice.
    Modigh K
    Psychopharmacologia; 1972; 23(1):48-54. PubMed ID: 4537019
    [No Abstract]   [Full Text] [Related]  

  • 17. L-5-hydroxytryptophan. Correlation between anticonvulsant effect and increases in levels of 5-hydroxyindoles in plasma and brain.
    Löscher W; Pagliusi SR; Müller F
    Neuropharmacology; 1984 Sep; 23(9):1041-8. PubMed ID: 6083501
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Brain and peripheral metabolism of 5-hydroxytryptophan-14C following peripheral decarboxylase inhibition.
    Warsh JJ; Stancer HC
    J Pharmacol Exp Ther; 1976 Jun; 197(3):545-55. PubMed ID: 1084420
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Behavioral, biochemical, and histochemical analyses of the central effects of monoamine precursors after peripheral decarboxylase inhibition.
    Butcher LL; Engel J; Fuxe K
    Brain Res; 1972 Jun; 41(2):387-411. PubMed ID: 4402607
    [No Abstract]   [Full Text] [Related]  

  • 20. The origin of blood 5-hydroxyindoleacetic acid following L-hydrazine-alpha-methyldopa (MK-486).
    Warsh JJ; Stancer HC
    Eur J Pharmacol; 1975 May; 32(1):128-32. PubMed ID: 1080116
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.