These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 4186739)

  • 41. Paleocortical excitability and sensory filtering during REM sleep deprivation.
    Satinoff E; Drucker-Colín RR; Hernández-Peón R
    Physiol Behav; 1971 Jul; 7(1):103-6. PubMed ID: 4337923
    [No Abstract]   [Full Text] [Related]  

  • 42. [The action profile of D,L-kavain. Cerebral sites and sleep-wakefulness-rhythm in animals].
    Holm E; Staedt U; Heep J; Kortsik C; Behne F; Kaske A; Mennicke I
    Arzneimittelforschung; 1991 Jul; 41(7):673-83. PubMed ID: 1772452
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Cholinergic blockage of network- and intrinsically generated slow oscillations promotes waking and REM sleep activity patterns in thalamic and cortical neurons.
    Steriade M
    Prog Brain Res; 1993; 98():345-55. PubMed ID: 8248523
    [No Abstract]   [Full Text] [Related]  

  • 44. Suppression of paradoxical sleep (PS) following hypothalamic defence reactions in cats during normal conditions and recovery from PS deprivation.
    Putkonen PT; Putkonen AR
    Brain Res; 1971 Mar; 26(2):333-47. PubMed ID: 4323102
    [No Abstract]   [Full Text] [Related]  

  • 45. Changes in the level of the diffuse electrocortical activity following interruption or activation of ponto-cerebellar systems in the cat.
    Raffaele R; Santangelo F; Sapienza S; Urbano A; Ventura M
    Arch Ital Biol; 1971 Dec; 109(4):338-56. PubMed ID: 5317136
    [No Abstract]   [Full Text] [Related]  

  • 46. The two stages of slow wave sleep in the cat and their relation to REM sleep.
    Ursin R
    Brain Res; 1968 Nov; 11(2):347-56. PubMed ID: 4302674
    [No Abstract]   [Full Text] [Related]  

  • 47. Attenuated Fast Steady-State Visual Evoked Potentials During Human Sleep.
    Sharon O; Nir Y
    Cereb Cortex; 2018 Apr; 28(4):1297-1311. PubMed ID: 28334175
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Differential responses of brain stem neurons during spontaneous and stimulation-induced desynchronization of the cortical eeg in freely moving cats.
    Mallick BN; Thankachan S; Islam F
    Sleep Res Online; 1998; 1(4):132-46. PubMed ID: 11382870
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Experimental epilepsy induced by cobalt powder in lower brain-stem and thalamic structures.
    Cesa-Bianchi MG; Mancia M; Mutani R
    Electroencephalogr Clin Neurophysiol; 1967 Jun; 22(6):525-36. PubMed ID: 4164966
    [No Abstract]   [Full Text] [Related]  

  • 50. Influence of hypnogenic brain areas on wakefulness- and rapid-eye-movement sleep-related neurons in the brainstem of freely moving cats.
    Mallick BN; Thankachan S; Islam F
    J Neurosci Res; 2004 Jan; 75(1):133-42. PubMed ID: 14689456
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Heterogeneity of arousals in human sleep: A stereo-electroencephalographic study.
    Peter-Derex L; Magnin M; Bastuji H
    Neuroimage; 2015 Dec; 123():229-44. PubMed ID: 26220744
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Alteration of motor and somesthetic thalamo-cortical responsiveness during wakefulness and sleep.
    Steriade M
    Electroencephalogr Clin Neurophysiol; 1969 Mar; 26(3):334. PubMed ID: 4183448
    [No Abstract]   [Full Text] [Related]  

  • 53. The relationship between cortical recruiting responses and ponto-geniculo-occipital waves during paradoxical sleep in the cat.
    Laihinen A; Valleala P
    Acta Physiol Scand; 1978 Sep; 104(1):43-7. PubMed ID: 211798
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Phases of spontaneous transitory activation during normal sleep in humans].
    Schieber JP; Muzet A; Ferriere PJ
    Arch Sci Physiol (Paris); 1971; 25(4):443-65. PubMed ID: 4345798
    [No Abstract]   [Full Text] [Related]  

  • 55. Ascending inhibitory and facilitatory influences controlling primary thalamo-cortical responsiveness.
    Demetrescu M
    Brain Res; 1967 Sep; 6(1):36-47. PubMed ID: 6052538
    [No Abstract]   [Full Text] [Related]  

  • 56. Local blood flow in different regions of the brain-stem during natural sleep and arousal.
    Baust W
    Electroencephalogr Clin Neurophysiol; 1967 Apr; 22(4):365-72. PubMed ID: 4164745
    [No Abstract]   [Full Text] [Related]  

  • 57. Chimpanzee sleep stages.
    Freemon FR; McNew JJ; Adey WR
    Electroencephalogr Clin Neurophysiol; 1971 Nov; 31(5):485-9. PubMed ID: 4107802
    [No Abstract]   [Full Text] [Related]  

  • 58. [Electrocortical rhythms characteristic of the onset of natural sleep in the cat. Their relationship to motor activity].
    Rougeul A; Corvisier J; Letalle A
    Electroencephalogr Clin Neurophysiol; 1974 Jul; 37(1):41-57. PubMed ID: 4135447
    [No Abstract]   [Full Text] [Related]  

  • 59. The effect of slow wave sleep and REM sleep on regional cerebral blood flow in cats.
    Reivich M; Isaacs G; Evarts E; Kety S
    J Neurochem; 1968 Apr; 15(4):301-6. PubMed ID: 5641651
    [No Abstract]   [Full Text] [Related]  

  • 60. The relationship between vigilance and cortical EEG manifestations after electrical stimulation of the thalamus and hippocampus in unrestrained rats.
    Kolínová M; Chocholová L
    Physiol Bohemoslov; 1978; 27(4):321-8. PubMed ID: 151289
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.