These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 4187398)

  • 1. Slow changes in the membrane potentials of glial cells and neurons following nerve impulses.
    Nicholls JG
    Electroencephalogr Clin Neurophysiol; 1969 Sep; 27(7):702. PubMed ID: 4187398
    [No Abstract]   [Full Text] [Related]  

  • 2. Do neuronal signals regulate potassium flow in glial cells? Evidence from an invertebrate central nervous system.
    Walz W
    J Neurosci Res; 1982; 7(1):71-9. PubMed ID: 7069800
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct effects of carbachol on membrane potential and ion activities in leech glial cells.
    Ballanyi K; Schlue WR
    Glia; 1988; 1(2):165-7. PubMed ID: 2976036
    [TBL] [Abstract][Full Text] [Related]  

  • 4. After-effects of nerve impulses on signalling in the central nervous system of the leech.
    Baylor DA; Nicholls JG
    J Physiol; 1969 Aug; 203(3):571-89. PubMed ID: 5387027
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glial-neural interaction demonstrated by the injection of Na+ and Li+ into cortical glia.
    Grossman RG; Seregin A
    Science; 1977 Jan; 195(4274):196-8. PubMed ID: 831270
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Neuron-neuroglia functional relation in the squid giant nerve fiber].
    Villegas J; Evans PD; Reale V
    Acta Physiol Pharmacol Latinoam; 1988; 38(1):127-34. PubMed ID: 3201992
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GLIAL CELLS IN THE CENTRAL NERVOUS SYSTEM OF THE LEECH; THEIR MEMBRANE POTENTIAL AND POTASSIUM CONTENT.
    KUFFLER SW; NICHOLIS JG
    Naunyn Schmiedebergs Arch Exp Pathol Pharmakol; 1964 May; 248():216-22. PubMed ID: 14230235
    [No Abstract]   [Full Text] [Related]  

  • 8. Electrophysiological properties of vertebrate Schwann cells in pure culture and in neuron coculture.
    Lieberman EM; Hargittai PT
    Acta Physiol Scand Suppl; 1989; 582():45. PubMed ID: 2816440
    [No Abstract]   [Full Text] [Related]  

  • 9. Electrophysiological and pharmacological properties of glial cells associated with the medial giant axon of the crayfish with implications four neuron-glial cell interactions.
    Smiley KA; Lieberman EM
    Ups J Med Sci; 1980; 85(3):331-42. PubMed ID: 6262986
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Voltage-dependent ion channels in glial cells.
    Sontheimer H
    Glia; 1994 Jun; 11(2):156-72. PubMed ID: 7523291
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in extracellular potassium concentration produced by neuronal activity in the central nervous system of the leech.
    Baylor DA; Nicholls JG
    J Physiol; 1969 Aug; 203(3):555-69. PubMed ID: 5387026
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efflux of potassium from neurones excited by glutamate and aspartate causes a depolarization of cultured glial cells.
    Hösli L; Hösli E; Landolt H; Zehntner C
    Neurosci Lett; 1981 Jan; 21(1):83-6. PubMed ID: 7207872
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potassium activity and changes in glial and neuronal membrane potentials during initiation and spread of afterdischarge in cerebral cortex of cat.
    Greenwood RS; Takato M; Goldring S
    Brain Res; 1981 Aug; 218(1-2):279-98. PubMed ID: 7272737
    [No Abstract]   [Full Text] [Related]  

  • 14. Significance of the potassium signal from neurones to glial cells.
    Pentreath VW; Kai-Kai MA
    Nature; 1982 Jan; 295(5844):59-61. PubMed ID: 7057874
    [No Abstract]   [Full Text] [Related]  

  • 15. Extracellular potassium activity, intracellular and extracellular potential responses in the spinal cord.
    Lothman EW; Somjen GG
    J Physiol; 1975 Oct; 252(1):115-36. PubMed ID: 1202194
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Physiology of neuroglia (author's transl)].
    Chen YZ
    Sheng Li Ke Xue Jin Zhan; 1981 Mar; 12(3):193-9. PubMed ID: 7339879
    [No Abstract]   [Full Text] [Related]  

  • 17. Clinical implications of Schwann cell biology.
    Armati PJ; Mathey EK
    J Peripher Nerv Syst; 2014 Mar; 19(1):14-23. PubMed ID: 24502278
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trophic interactions of neurons and glia.
    Kriegler JS; Krishnan N; Singer M
    Adv Neurol; 1981; 31():479-504. PubMed ID: 6172960
    [No Abstract]   [Full Text] [Related]  

  • 19. Effects of glutamatergic agonists and antagonists on membrane potential and intracellular Na+ activity of leech glial and nerve cells.
    Dörner R; Zens M; Schlue WR
    Brain Res; 1994 Nov; 665(1):47-53. PubMed ID: 7882017
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of cardiac parasympathetic neurons, glial cells, and regional cholinergic innervation of the mouse heart.
    Fregoso SP; Hoover DB
    Neuroscience; 2012 Sep; 221():28-36. PubMed ID: 22766236
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.